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Abstract 

This article presents an approach to achieving flexibility in a transradial prosthesis that allows the grasping of objects of 

different shapes through a hardware-implemented control architecture, enabling users to perform various activities of daily 

living. The proposed generalized hardware architecture utilizes an artificial neural network, facilitating the adjustment and 

interconnection between neurons, as well as providing adequate resolution to adapt the behavior to diverse finger 

movement patterns. To this end, distance sensors were incorporated into the prosthesis fingers to obtain information about 

the distance to objects. Servomotors were also used to manipulate the position of the fingers based on the data obtained 

from the sensors. A central composite design was used to train the network to identify finger movement patterns, 

generating appropriate combinations of independent variables (sensor data) and their association with their respective 

responses (motor movements). The main result of this proposal is that the assumption of the values assigned to the patterns 

is matched by the prosthesis through the gripping and holding of cylindrical, spherical and rectangular objects with an 

accuracy of 97.8%, a mean square error of 1.7042° and a response time of 0.5 seconds. 
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1. Introduction 

In recent years, there has been a growing interest in improving the quality of life for people with disabilities. In this 

context, motor disability due to the absence of an arm at the transradial level can cause functional limitations such as 

difficulty manipulating and grasping objects, changes in body biomechanics, limited employment opportunities, 

psychological problems, and difficulty performing daily activities [1, 2]. Today, active, myoelectric, hybrid, bionic, and 

intelligent prostheses are available as alternatives to replace a forearm and allow a person to resume some of their daily 

activities. However, most commercially available transradial prosthesis designs are expensive, difficult to design and 

control, have poor aesthetics, and slow operating speed, among other limitations [3-7]. For this reason, the design and 

development of low-cost transradial prostheses that allow for a wide variety of movements with high precision and rapid 

response are required. In this regard, several studies have been conducted on transradial prostheses, such as Prakash and 

Sharma [8] which presents a 3D-printed transradial prosthesis controlled by muscle contractions detected by an EMG 

sensor and a closed-loop position control system to manage its operation [9] presented a 3D-printed transradial prosthesis 

controlled with an Arduino board and six servomotors, used to measure the accuracy of finger positioning, specifically the 

angles of the distal phalanges. Fang, et al. [10] presented a method for the simultaneous recognition of gestures and forces 

for interaction with a prosthetic hand. This involves collecting data using EMG and force sensors, which are then fed into a 

convolutional neural network for training. Furthermore, the prosthetic hand has six degrees of freedom, and each fingertip 

incorporates tactile sensors that allow for the implementation of three levels of grip strength. Furthermore, transradial 

prostheses are composed of various components (socket, control system, terminal unit, etc.), employ different types of 

sensors and actuators (servomotors, linear actuators, myoelectric sensors, force sensors, position sensors, etc.), and utilize 

diverse control systems (myoelectric, electromyographic, artificial neural networks, fuzzy logic, etc.). However, a 

sufficiently precise system for detecting arm muscle movements has not yet been developed, highly accurate control has 

not been implemented, and the prosthesis's aesthetics need improvement. Additionally, devices that use electromyographic 

signals require a lengthy user training period, depend heavily on the robustness of these signals, and generally perform 

tasks involving grasping symmetrical objects [11, 12]. Another relevant aspect is the number and type of movements that 

these prostheses can perform, as this factor is crucial before, during and after the development of these devices. 

Based on the above, the objective of this work is the design and construction of a transradial prosthesis for gripping 

objects of different shapes (circular, cylindrical, rectangular, spherical, etc.). To achieve this, distance sensors placed on the 

five fingers were used to obtain data on the object's shape characteristics. Five servomotors and nylon thread were used to 

adjust the finger position. An artificial neural network (ANN) was designed to identify the patterns that describe the 

object's shape and determine the type of grip. A central composite design (CCD) was used to configure the samples or 

patterns used for training the ANN. An Arduino Mega 2560 board was also used to implement the ANN algorithm for 

prosthesis control, and to acquire the sensor signals and produce the control signals to adjust the actuator position. An 

artificial neural network was used because it is a computational model inspired by the functioning of the human brain and 

can be implemented in various programming languages, facilitating its integration into software and hardware systems. 

Furthermore, artificial neural networks have demonstrated a wide range of applications in diverse fields, such as systems 

optimization [13, 14] medical applications [15] prediction of electrical energy production [16, 17] and biotechnological 

processes [18, 19] among others. With the development of this project, it is hoped to contribute to the development of more 

effective prostheses with a greater number of functions than most current prostheses, which can perform finger gestures and 

open and close the fingers to grasp objects. The structure of this scientific article is as follows: section two describes each 

of the elements used in the development of the prosthesis, section three shows the results obtained from the simulation of 

the system, section four shows the experimental tests and validation of the proposed prosthesis, and section five presents 

the conclusions obtained of the work. 
 

2. Description of the Operation of the Transradial Prosthesis 
Figure 1 shows a block diagram representing the structure of the system used to control the operation of the transradial 

prosthesis. In this system, five servomotors (SM1, SM2, SM3, SM4, and SM5) were used to move the five fingers of the 

prosthesis. Five distance sensors (DS1, DS2, DS3, DS4, and DS5) were used to obtain data characterizing the shape of 

objects. An artificial neural network was used to identify the object's shape from the data obtained by the sensors and 

determine the appropriate actuator movement to grasp it. In this context, the artificial neural network is responsible for 

pattern recognition; that is, it determines the common characteristics among different object shapes. To correctly grasp an 

object and prevent it from shifting or falling due to differences in distance between the fingers and the object, the 

appropriate speed for each servomotor is calculated. For this project, rotary actuators were chosen because they offer a fast 

response and high positioning accuracy, allow for speed control, can maintain a fixed position, and provide high torque, 

among other advantages. Distance sensors were also selected instead of myoelectric sensors because myoelectric signals 

have several disadvantages. For example, interpretation is difficult due to electrical noise and interference from other 

muscles, signal processing is complex, prolonged use can cause discomfort, and they require very precise placement, 

among other drawbacks. In contrast, distance sensors do not present these difficulties, as they interact directly with the 

object, and their response is easy to acquire and interpret.  
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Figure 1.   

Block diagram of the transradial prosthesis. 

 

 

2.1. Mechanical Design of the Transradial Prosthesis 

Figures 2(a), 2(b), and 2(c) show the proposed design for the prosthesis. Figures 3(a) and 3(b) depict the mechanical 

system used to generate finger movement in the transradial prosthesis. As can be seen, distance sensors were placed on the 

fingers, and each finger is moved by a servomotor and a nylon thread, which simulates the tendons of the human hand. In 

this case, the nylon thread is connected from the fingertip to the forearm, passing through a set of guides before reaching 

the servomotor. The rotation of the servomotor winds the thread, causing the finger to flex. Finally, a spring was placed in 

the joint of each finger to return it to its initial position once the servomotor movement is complete. This position is the 

fully open hand or the servomotor's zero-degree angle. The most relevant features of the proposed transradial prosthesis 

include ten degrees of freedom, which gives it great versatility for gripping objects of different shapes. The structure 

weighs 1.5 kg and is capable of handling objects up to 9 cm wide and 500 g in weight. 

 

 
Figure 2.  

Design of the transradial prosthesis, a) isometric view with socket, b) isometric view and c) top view. 

 

 
Figure 3. 

Mechanical system of the transradial prosthesis, a) location of the servomotors, b) location of the sensors and 
nylon threads and c) printing of the prosthesis parts. 

 

The prosthesis was manufactured using 3D printing with PLA carbon fiber, a rigid and strong material with a good 

strength-to-weight ratio, high wear resistance, and an attractive surface finish, among other properties. Specifically, this 

material has a tensile strength of 70 MPa, an elastic modulus of 7 GPa, a flexural strength of 100 MPa, and a flexural 

modulus of 6320 MPa. For manufacturing, a Creality CR-5 Pro H 3D printer was used with a 77% infill setting, a line 

pattern, and a layer height of 0.12 mm. Figure 3(c) shows the printing configuration for the mechanical parts (total weight 

of 150 g). 

To verify the prosthesis's behavior under the action of forces during its operation, a stress analysis was performed. This 

analysis allows for the identification of critical failure points, the prevention of structural damage, the simulation of the 

structure's behavior and deformation under different loads, and the determination of the material's maximum strength. The 

analysis was performed using SolidWorks, a computer-aided design software that allows for 3D modeling of parts, the 

generation of 2D drawings, and the performance of structural and motion simulations. Figure 4(a) shows the back of the 

prosthesis, which has a fixed portion indicated by green arrows, while the pink arrows represent the application of a 100 N 

transverse load. As can be seen in Figure 4(b), the back of the prosthesis does not present a risk of breakage under this 

force, which is indicated by areas colored red and which are not present in the figure. However, a slight displacement of 

6.728 × 10⁻³ mm and a maximum tension of 1.152 × 10⁶ N/m² were observed. On the other hand, Figure 4(c) shows one of 

the prosthetic fingers, to which a maximum force of 20 N was applied, due to its lower structural resistance, as its interior is 

hollow to allow the passage of the nylon thread. Finally, Figure 4(d) shows that the fingers also do not present a risk of 
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breakage under these conditions, registering a maximum displacement of 1.0745 × 10⁻⁴ mm and a tension of 2.327 × 10⁵ 

N/m².  

 

 
Figure 4.  

Results of the stress analysis of the parts of the transradial prosthesis. 
 

Based on the above, it is concluded that PLA carbon fiber adequately withstands the applied loads, exhibits minimal 

and acceptable deformation, and shows no critical stress concentrations. These results validate both the choice of material 

and the proposed design for the prosthesis. Figure 5 shows the constructed prototype of the prosthesis, which has a black 

acrylic paint finish. The mechanical parts were assembled with screws and wire to improve fastening, and the nylon thread 

is located on the inside to enhance the prototype's aesthetics. 

 

 
Figure 5.  

Transradial prosthesis prototype. 

 

2.2. Diseño Electrónico De La Prótesis Transradial 

Figure 6 shows the electronic diagram used to control the operation of the transradial prosthesis. As can be seen, an 

Arduino MEGA 2560 board was used to read the signals generated by the VL6180X distance sensors, denoted as S1, S2, 

S3, S4, and S5, which were connected to the board's analog inputs. This same board was used to implement the artificial 

neural network algorithm to provide control signals to the MG995 servomotors, identified as M1, M2, M3, M4, and M5, 

through the digital outputs. A potentiometer was also included in the electronic circuit to simulate the behavior of the 

distance sensors. The most relevant technical characteristics of the Arduino MEGA 2560 board are: a 5V operating voltage, 

16 analog inputs, 54 digital pins, a 16 MHz clock speed, 256 KB of Flash memory, and C++ programming language, 

among others. These specifications make this board an accessible, low-cost option with suitable technical capabilities for 

this project [20-22]. Finally, a battery was used to power the electronic system, and the Arduino MEGA 2560 board was 

configured to operate in low-power mode to extend battery life. 

 

 
Figure 6.  

Electronic diagram of the transradial prosthesis. 

 

a) b) c) d)

a) b)

c) d)
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2.3. Central Composite Design 

The proposed transradial prosthesis is capable of grasping a wide variety of objects with different shapes. To achieve 

this, an artificial neural network was used for parameter identification. Specifically, the neural network identifies the 

object's shape and determines the appropriate position of the prosthesis's fingers to grasp it. To train the artificial neural 

network and identify the parameters, a central composite design (CCD) was used, which allows for analyzing how a 

system's responses vary as a function of a set of input variables [23-25]. In this case, five independent variables 

corresponding to the distance sensor signals (𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑎𝑛𝑑 𝑋5) and five dependent variables corresponding to the 

servomotor positions (𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑎𝑛𝑑 𝑌5) were considered. This type of experimental design considers combinations of 

high and low levels, as well as extreme levels and the midpoint of the independent variables, providing sufficient 

information to estimate a wide range of system responses to different input conditions. In this case, the transradial 

prosthesis was defined as being able to grasp objects with a minimum width of 1 cm and a maximum width of 9 cm. Table 

1 shows the data used for training the artificial neural network. Using the CCD configurations, the ANN will be able to 

identify a greater number of objects, and the prosthesis will be able to grasp objects with regular and irregular shapes. 

 
Table 1.  

Configuration of the composite central design samples for ANN training. 

Samples 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓 𝒀𝟏 𝒀𝟐 𝒀𝟑 𝒀𝟒 𝒀𝟓 

1 0.50 0.50 0.50 0.50 0.50 5.00 5.00 5.00 5.00 5.00 

2 3.00 0.50 0.50 0.50 0.50 30.00 5.00 5.00 5.00 5.00 

3 0.50 3.00 0.50 0.50 0.50 5.00 30.00 5.00 5.00 5.00 

4 3.00 3.00 0.50 0.50 0.50 30.00 30.00 5.00 5.00 5.00 

5 0.50 0.50 3.00 0.50 0.50 5.00 5.00 30.00 5.00 5.00 

6 3.00 0.50 3.00 0.50 0.50 30.00 5.00 30.00 5.00 5.00 

7 0.50 3.00 3.00 0.50 0.50 5.00 30.00 30.00 5.00 5.00 

8 3.00 3.00 3.00 0.50 0.50 30.00 30.00 30.00 5.00 5.00 

9 0.50 0.50 0.50 3.00 0.50 5.00 5.00 5.00 30.00 5.00 

10 3.00 0.50 0.50 3.00 0.50 30.00 5.00 5.00 30.00 5.00 

11 0.50 3.00 0.50 3.00 0.50 5.00 30.00 5.00 30.00 5.00 

12 3.00 3.00 0.50 3.00 0.50 30.00 30.00 5.00 30.00 5.00 

13 0.50 0.50 3.00 3.00 0.50 5.00 5.00 30.00 30.00 5.00 

14 3.00 0.50 3.00 3.00 0.50 30.00 5.00 30.00 30.00 5.00 

15 0.50 3.00 3.00 3.00 0.50 5.00 30.00 30.00 30.00 5.00 

16 3.00 3.00 3.00 3.00 0.50 30.00 30.00 30.00 30.00 5.00 

17 0.50 0.50 0.50 0.50 3.00 5.00 5.00 5.00 5.00 30.00 

18 3.00 0.50 0.50 0.50 3.00 30.00 5.00 5.00 5.00 30.00 

19 0.50 3.00 0.50 0.50 3.00 5.00 30.00 5.00 5.00 30.00 

20 3.00 3.00 0.50 0.50 3.00 30.00 30.00 5.00 5.00 30.00 

21 0.50 0.50 3.00 0.50 3.00 5.00 5.00 30.00 5.00 30.00 

22 3.00 0.50 3.00 0.50 3.00 30.00 5.00 30.00 5.00 30.00 

23 0.50 3.00 3.00 0.50 3.00 5.00 30.00 30.00 5.00 30.00 

24 3.00 3.00 3.00 0.50 3.00 30.00 30.00 30.00 5.00 30.00 

25 0.50 0.50 0.50 3.00 3.00 5.00 5.00 5.00 30.00 30.00 

26 3.00 0.50 0.50 3.00 3.00 30.00 5.00 5.00 30.00 30.00 

27 0.50 3.00 0.50 3.00 3.00 5.00 30.00 5.00 30.00 30.00 

28 3.00 3.00 0.50 3.00 3.00 30.00 30.00 5.00 30.00 30.00 

29 0.50 0.50 3.00 3.00 3.00 5.00 5.00 30.00 30.00 30.00 

30 3.00 0.50 3.00 3.00 3.00 30.00 5.00 30.00 30.00 30.00 

31 0.50 3.00 3.00 3.00 3.00 5.00 30.00 30.00 30.00 30.00 

32 3.00 3.00 3.00 3.00 3.00 30.00 30.00 30.00 30.00 30.00 

33 0.00 1.75 1.75 1.75 1.75 0.00 17.5 17.5 17.5 17.5 

34 4.72 1.75 1.75 1.75 1.75 47.2 17.5 17.5 17.5 17.5 

35 1.75 0.00 1.75 1.75 1.75 17.5 0.00 17.5 17.5 17.5 

36 1.75 4.72 1.75 1.75 1.75 17.5 47.2 17.5 17.5 17.5 

37 1.75 1.75 0.00 1.75 1.75 17.5 17.5 0.00 17.5 17.5 

38 1.75 1.75 4.72 1.75 1.75 17.5 17.5 47.2 17.5 17.5 

39 1.75 1.75 1.75 0.00 1.75 17.5 17.5 17.5 0.00 17.5 

40 1.75 1.75 1.75 4.72 1.75 17.5 17.5 17.5 47.2 17.5 

41 1.75 1.75 1.75 1.75 0.00 17.5 17.5 17.5 17.5 0.00 

42 1.75 1.75 1.75 1.75 4.72 17.5 17.5 17.5 17.5 47.2 

43 1.75 1.75 1.75 1.75 1.75 17.5 17.5 17.5 17.5 17.5 

44 1.75 1.75 1.75 1.75 1.75 17.5 17.5 17.5 17.5 17.5 
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45 1.75 1.75 1.75 1.75 1.75 17.5 17.5 17.5 17.5 17.5 

46 1.75 1.75 1.75 1.75 1.75 17.5 17.5 17.5 17.5 17.5 

 

Figure 7 shows a graphical representation of some configurations proposed by the DDC, and how these are associated 

with the shape of objects or with the distance measured by the sensors placed on the fingers of the prosthesis. In this sense, 

the objects in the figure have a rigid shape (with straight sides), which is due to the characteristics of the CCD. However, 

these configurations will provide the artificial neural network with the ability to determine objects with curved shapes, as 

well as with sides that are neither horizontal nor vertical. 

 

 
Figure 7.  

Relationship of the DDC with the objects, a) sample 32, b) sample 1, c) sample 8, and d) sample 25. 

 

2.4. Artificial Neural Network 

Figure 8  shows the configuration of the artificial neural network used for object identification and grasping. As can be 

seen, the structure is composed of two intermediate layers: five signals in the input layer (𝑛 = 5), five neurons in the first 

intermediate layer (𝑛1 = 5), five neurons in the second intermediate layer (𝑛2 = 5), and five signals associated with the 

output layer (𝑛3 = 5). As mentioned previously, the network inputs are the readings from the distance sensors 

(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑎𝑛𝑑 𝑋5), while the outputs correspond to the control signals for the five servomotors (𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑎𝑛𝑑 𝑌5). 

The training or adjustment of the synaptic weights and thresholds of the artificial neural network is carried out by the 

backpropagation algorithm, which is a supervised algorithm that requires the desired value or result for each of the training 

samples (see data in Table 1) [26]. 

 

 
Figure 8.  

Structure of the artificial neural network. 
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The backpropagation algorithm consists of two stages. The first is forward propagation, where the input variables flow 

from the input layer through the intermediate layers and into the output layer. In this context, Equation 1 represents the 

calculation of the total input of the j-th neuron in the first intermediate layer (𝐿1). This input is obtained as the weighted 

sum of the inputs 𝑋𝑖 multiplied by their respective synaptic weights 𝑊𝑗𝑖
(𝐿1)

, where 𝑊𝑗𝑖
(𝐿1)

 is the weight connecting the j-th 

neuron in 𝐿1 to the i-th input of the network. On the other hand, Equation 2 is used to determine the output of the j-th 

neuron in 𝐿1, which is calculated by applying an activation function g(.) to the total input. This function must be 

differentiable throughout its domain. In this case, sigmoidal functions were used for all neurons in the network [27, 28]. 

 

𝐼𝑗
𝐿1 = ∑ 𝑊𝑗𝑖

𝐿1 ∗ 𝑋𝑖
𝑛
𝑖=0    (1) 

 

𝑌𝑗
𝐿1 = 𝑔(𝐼𝑗

𝐿1)   (2) 

In the second intermediate layer (𝐿2), the input and output of the j-th neuron are determined by Equations 3 and 4 

respectively. In this case, the total input is the weighted sum of the outputs of 𝐿1 multiplied by their respective synaptic 

weights 𝑊𝑗𝑖
𝐿2 , where 𝑊𝑗𝑖

𝐿2  is the weight connecting the j-th neuron of 𝐿2 and the i-th neuron of 𝐿1. 

 

𝐼𝑗
𝐿2 = ∑ 𝑊𝑗𝑖

𝐿2 ∗ 𝑌𝑖
𝐿1𝑛1

𝑖=0    (3) 

 

𝑌𝑗
𝐿2 = 𝑔(𝐼𝑗

𝐿2)   (4) 

In the output layer (𝐿3), the input and output of the j-th neuron are determined by Equations 5 and 6 respectively. The 

total input is the weighted sum of the outputs of 𝐿2 multiplied by their respective synaptic weights 𝑊𝑗𝑖
𝐿3, where 𝑊𝑗𝑖

𝐿3 is the 

weight connecting the j-th neuron of 𝐿3 and the i-th neuron of 𝐿2. 

 

𝐼𝑗
𝐿3 = ∑ 𝑊𝑗𝑖

𝐿3 ∗ 𝑌𝑖
𝐿2𝑛2

𝑖=0    (5) 

 

𝑌𝑗
𝐿3 = 𝑔(𝐼𝑗

𝐿3)   (6) 

Before applying the second stage of the backpropagation algorithm, a function must be used to measure the error 

between the responses produced by the network and the desired values. For this purpose, the squared error (SE) is used, 

calculated using Equation 7, which quantifies the difference between the predicted values (𝑌𝑗
𝐿3) and the desired values (𝑑𝑗). 

 

𝐸𝐶 =
1

2
∑ (𝑑𝑗 − 𝑌𝑗

𝐿3)
2𝑛3

𝑖=0     (7) 

The second stage of the backpropagation algorithm, known as backpropagation, consists of calculating the gradients 

down of the squared error (SE) with respect to the synaptic weights and thresholds. Where Equation 8 describes the 

calculation of the gradient down with respect to the synaptic weights in layer 𝐿3, while Equation 9 is used for updating 

those weights. 

 

𝑊𝑗𝑖
𝐿3(𝑛 + 1) = 𝑊𝑗𝑖

𝐿3(𝑛) − 𝜂
𝜕𝐸𝐶

𝜕𝑊
𝑗𝑖
𝐿3

    (8) 

 

𝑊𝑗𝑖
𝐿3(𝑛 + 1) = 𝑊𝑗𝑖

𝐿3(𝑛) − 𝜂(𝑑𝑗 − 𝑌𝑗
𝐿3) (𝑔′(𝐼𝑗

𝐿3)) (𝑌𝑗
𝐿2)     (9) 

And Equation 10 describes the calculation of the downward gradient with respect to the synaptic weights in the 𝐿2 

layer, while Equation 11 is used for updating said weights. 

 

𝑊𝑗𝑖
𝐿2(𝑛 + 1) = 𝑊𝑗𝑖

𝐿2(𝑛) − 𝜂
𝜕𝐸𝐶

𝜕𝑊
𝑗𝑖
𝐿2

    (10) 

 

𝑊𝑗𝑖
𝐿2(𝑛 + 1) = 𝑊𝑗𝑖

𝐿2(𝑛) − 𝜂 (∑ (𝑑𝑘 − 𝑌𝑘
𝐿3) (𝑔′(𝐼𝑘

𝐿3)) (𝑊𝑘𝑖
𝐿3)

𝑛3
𝑘=1 ) (𝑔′(𝐼𝑗

𝐿2)) (𝑌𝑗
𝐿1)   (11) 

Equation 12 describes the calculation of the downward gradient with respect to the synaptic weights in the 𝐿1 layer, 

while Equation 13 is used for updating said weights. 

 

𝑊𝑗𝑖
𝐿1(𝑛 + 1) = 𝑊𝑗𝑖

𝐿1(𝑛) − 𝜂
𝜕𝐸𝐶

𝜕𝑊
𝑗𝑖
𝐿1

    (12) 

 

𝑊𝑗𝑖
𝐿1(𝑛 + 1) = 𝑊𝑗𝑖

𝐿1(𝑛) + 𝜂 (∑ (∑ (𝑑𝑘 − 𝑌𝑘
𝐿3) (𝑔′(𝐼𝑘

𝐿3)) (𝑊𝑘𝑖
𝐿3)

𝑛3
𝑘=1 ) (𝑔′(𝐼𝑚

𝐿2)) (𝑊𝑚𝑖
𝐿2)

𝑛2
𝑚=1 ) (𝑔′(𝐼𝑗

𝐿1)) (𝑋𝑖) (13) 

 

The two stages of the backpropagation algorithm must be repeated for all data in the CCD, which constitutes an epoch. 

The total number of epochs required depends on how many are needed to achieve the desired accuracy or minimize the 

error of the artificial neural network. Finally, the efficiency of the artificial neural network was evaluated using the mean 
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squared error (MSE) and the root mean squared error (RMSE).  

The former indicates the average deviation of the network's predictions from the expected values, while the latter 

indicates the deviation of the network from the expected values. This value is calculated with Equation 14 where 𝑠1 is the 

number of samples in the dataset, 𝑌𝑖𝑗  is the actual value of the j-th output of the i-th sample, and 𝑌̂𝑖𝑗  is the value predicted 

by the network for that same output and sample. 

 

𝑀𝑆𝐸 =
1

𝑠1
∑ ∑ (𝑌𝑖𝑗 − 𝑌̂𝑖𝑗)

2𝑛3
𝑗=1

𝑠1
𝑖=1     (14) 

The implementation of the artificial neural network algorithm on the Arduino MEGA 2560 board yielded the following 

results: processing time of 5 milliseconds, and storage size of 13876 bytes. The general structure of the programming 

algorithm for object identification using the ANN is shown below. 

 

// Define the samples of the CCD in a matrix. 

// η=0.075; epochs=1000; samples=46; sample = 0; % epoch=0; 

for k1=1:1: epochs 

  for k=1:1:samples 

    sample = sample +1; 

    // Backpropagation algorithm: first stage 

    // Current sample of X1, X2, …, X5. 

    // Current desired signals D1, D2, …, D5. 

    // Hidden layer 1 neurons: Use equations XX and YY 

    // Hidden layer 2 neurons: Use equations XX and YY 

    // Output layer neurons: use equations XX and YY 

    // Squared error of the network: use equation XX1 

    // Backpropagation algorithm: second stage 

    // Update of W_i_j of the output layer: equation (XX) 

    // Update of W_i_j of hidden layer 2: equation (XX) 

    // Update of W_i_j of hidden layer 1: equation (XX) 

  end 

  epoch = epoch +1; 

end 

 

3. Results 
To analyze the performance of the artificial neural network, the mean squared error (MSE) and root mean squared 

error (RMSE) were determined for each of its outputs, as well as the overall MSE and RMSE values considering all the 

network's outputs. Figure 9 shows the evolution of the network's overall MSE, as well as that of each of its outputs, as the 

number of epochs increases. As can be seen, at least 6000 epochs are required for each of the network's outputs to reach a 

minimum error level that allows for high precision, resulting in greater efficiency of the transradial prosthesis. Table 2 

shows the obtained MSE and RMSE values. Another important aspect of these results is that they demonstrate that the 

proposed network structure fulfills its objective of correctly identifying the patterns derived from the shape of the objects. 

 
Table 2.  

Results obtained from the analysis of the artificial neural network. 

Output MSE (°) RMSE (°) 

General 2.9043 1.7042 

𝑌1 0.4366 0.6607 

𝑌2 0.4867 0.6976 

𝑌3 0.3700 0.6082 

𝑌4 1.2283 1.1082 

𝑌5 0.3826 0.6185 
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Figure 9.  

Evolution of the mean squared error, a) general of the network, b) output 𝑌1, c) output 𝑌2, d) output 𝑌3, e) output 𝑌4 and f) output 𝑌5. 

 

To demonstrate the network's efficiency in identifying object shapes and the appropriate gripping technique, simulation 

tests were performed to analyze the artificial neural network's performance. Table 3 presents the network's responses, or the 

angles each finger must move to grasp the object, based on the distances measured by the distance sensors. Figure 10 shows 

a graphical representation of the simulation tests described in Table 3 specifically the initial position of each finger (circles) 

and the distance measured by the sensors relative to the shape (square, triangle, hexagon, and circle). 

 

 
Figure 10.  

Graphical representation of the configurations in Table 3. 

 
Table 3.  

Results of object identification with the artificial neural network. 

Object 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓 𝒀𝟏 𝒀𝟐 𝒀𝟑 𝒀𝟒 𝒀𝟓 

Square 3.00 3.00 3.00 3.00 3.00 32.121 31.852 31.579 32.189 31.34 

Triangle 2.19 1.18 2.44 3.06 3.69 21.936 10.376 24.027 32.802 36.319 

Hexagon 2.19 3.13 2.18 2.18 3.09 24.292 37.049 24.181 22.251 36.029 

Circle 1.72 2.15 1.55 1.55 2.13 17.355 24.449 15.052 13.577 24.032 
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Figure 11 shows how the prosthesis grips a polygonal object measuring 8 cm wide, 5.5 cm high, and weighing 300 g. 

In this case, the finger position on the object was appropriate, as the fingertips made contact with the object's surface. 

Therefore, it can be concluded that the proposed transradial prosthesis is a viable solution for individuals who have lost a 

forearm transradially. Table 4 presents a comparative analysis that considers various technical aspects of several transradial 

prosthesis prototypes, which have been previously proposed in the scientific literature. This comparison focuses 

specifically on the materials used for their construction, as well as the advantages and disadvantages related to their 

durability, ease of implementation, and control system. The purpose of including this table is to provide a clear and 

systematic overview of the main characteristics that differentiate the existing prototypes, allowing for the identification of 

common patterns and potential areas for improvement in future developments. Based on the comparative analysis, it is 

concluded that the proposed system represents a more efficient alternative from a construction standpoint. Furthermore, it 

incorporates an artificial neural network that operates with a high degree of accuracy in both object identification and the 

selection of the appropriate method for holding them. This network has been designed to operate efficiently on low-cost 

platforms, which reinforces the project's economic viability. Thanks to this combination of structural simplicity, low cost, 

and high operational efficiency, the proposed prosthesis is positioned as an innovative option. 

 

 
Figure 11.  

Object clamping with the transradial prosthesis, a) test 1, b) test 2, c) test 3 and d) test 4. 

 
Table 4.  

Comparison between the developed prosthesis and the latest generation of commercial prostheses. 

Name Features 

A 3D-Printed EEG based 

Prosthetic Arm Fuentes-

Gonzalez, et al. [29]. 

A transradial prosthesis was developed using Blender software for dimensioning. All 

prosthetic components were 3D printed using PLA. Three actuators connected to the 

fingers via nylon thread were incorporated, along with a device capable of measuring 

brain electrical signals. This device is equipped with a frontal sensor, wireless data 

transmission, and a control unit for EEG signal acquisition. The EEG data obtained was 

filtered and adjusted to the patient's capabilities. Finally, the prosthesis can open and close 

the hand with a force of 11.0 N, sufficient for grasping objects used in daily life. 

A Proposal of Bioinspired 

Soft Active Hand Prosthesis 

Toro-Ossaba, et al. [30]. 

This article presents a transradial prosthesis with a design that mimics the musculoskeletal 

components and morphology of the human hand. CAD models were developed, and a 3D 

printer was used to fabricate the prosthesis's skeletal structure; soft materials were used for 

the musculoskeletal components. A myoelectric control system based on five EMG 

sensors and a recurrent neural network was implemented to classify hand gestures. With 

this system, the prosthesis was able to intuitively perform five different gestures, 

achieving 87% accuracy. 

Continuous Semi-

autonomous Prosthesis 

Control Using a Depth 

Sensor on the Hand Castro 

and Dosen [31]. 

This article describes the implementation of a control system for a prosthesis that utilizes 

myoelectric sensors, a depth sensor located on the dorsal side of the hand, and 

proportional control. The system identifies the grip type, object size and orientation, and 

the necessary wrist rotation to manipulate objects of varying shapes, sizes, and 

orientations, whether placed individually or in unstructured environments. The prosthesis 

has two degrees of freedom: it can rotate the wrist and perform two types of grips by 

opening and closing the fingers. For control, two dual-differential surface electrodes were 

placed on the user's right forearm, along with a camera located on the dorsal side of the 

prosthetic hand. A laptop computer and a Bluetooth connection were used to integrate and 

coordinate all system elements. Experimental results demonstrated that participants 

successfully used the system to manipulate a wide variety of objects and components. 

This work This paper presents a transradial prosthesis designed for gripping objects of various shapes 

(cylindrical, spherical, rectangular, square, etc.). Distance sensors were used to record 

object information, and servomotors were used to adjust the position of the prosthesis's 

a) b) c) d)
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fingers. An artificial neural network was also employed to identify object patterns and 

characteristics and determine the appropriate gripping mode. The network was trained 

using a central composite design, which provided effective modeling and accurate 

identification of patterns corresponding to different objects. The prosthesis was developed 

using a Creality CR-5 Pro H 3D printer with PLA carbon fiber filament. The control 

system was implemented on an Arduino MEGA board, and distance sensors were used 

instead of myoelectric sensors to avoid the problems associated with myoelectric signals. 

 

4. Discussion 
The results show that applying an artificial neural network to a transradial prosthesis allows for the identification of the 

characteristics of objects with different shapes (spherical, circular, square, triangular, etc.), as well as determining the 

appropriate way to grasp them with the prosthesis. Likewise, the use of an experimental design (specifically, the central 

composite design) provided samples with the appropriate characteristics for the correct identification of objects with 

regular and irregular shapes. This is because the samples generated by the central composite design are composed of 

combinations of the maximum and minimum values, as well as the midpoint and extreme values of the system's 

independent variables (response of the distance sensors). These results show that it is possible to design and develop 

transradial prostheses capable of performing movements based on the shape of objects, in contrast to most current 

prostheses of this type, which only allow for some gestures or opening and closing the wrist to grasp objects. This 

demonstrates that the quality of the samples used to train the artificial neural network is a fundamental aspect for the proper 

functioning of the prosthesis. 

 

5. Conclusions 

In this work, a transradial prosthesis capable of grasping objects with regular and irregular shapes was designed and 

developed. A methodology is presented that increases the gripping modes and the variety of objects the device can 

manipulate. To identify the shape of the objects, an artificial neural network trained with data obtained from five distance 

sensors located on the fingers of the prosthesis was used. From this information, the network determines the appropriate 

movement that five servomotors must perform to adjust the position of the fingers and grasp the object correctly. One of 

the most important aspects in the design of a transradial prosthesis is the number of shapes it can grasp. Therefore, a central 

composite design was used to plan a set of tests (observations), in which each combination proposed by the experimental 

design was associated with the desired movement of the prosthesis fingers. This strategy avoids the use of random 

combinations or tests with arbitrarily selected objects and allows for the extraction and analysis of the relevant 

characteristics of each object for their subsequent application in the artificial neural network. 

Another important aspect that improved the efficiency of the transradial prosthesis was the artificial neural network's 

ability to map systems with multiple inputs and outputs, as well as its ability to identify patterns from a set of samples. In 

this regard, the artificial neural network was able to recognize objects with square, circular, triangular, hexagonal, and other 

shapes. These characteristics can contribute to the development of more functional and advanced prostheses than current 

ones, which generally only allow finger gestures and opening or closing the wrist to grasp objects. However, it is still 

necessary to improve the aesthetics and ergonomics of the proposed transradial prosthesis, as these aspects are fundamental 

for people who have lost an arm. Likewise, mechanical design should be optimized, primarily through the implementation 

of servomotors that allow for the manipulation of heavier objects. Future studies should explore new methodologies that 

expand the functions of transradial prostheses. Furthermore, these prostheses must be designed with advanced materials 

that improve both user comfort and aesthetic appearance, making them thinner and more flexible to more realistically 

mimic the human arm. 
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