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Abstract 

Image retrieval has become a central component of large-scale visual understanding systems, particularly as real-world 

datasets grow in volume, diversity, and semantic complexity, and numerous methods have been proposed to improve 

retrieval accuracy across diverse scenarios [1]. However, the performance of individual models often varies significantly 

depending on the characteristics of real-world datasets, making it challenging for a single technique to consistently achieve 

robust results. To address this limitation, we introduce a fusion-based retrieval framework that leverages the 

complementary strengths of three state-of-the-art models: SALAD [2] and CliqueMining [3] MegaLoc [4]. Each model 

independently generates an initial ranked list, capturing different visual cues and retrieval patterns. To further enhance 

reliability and reduce model-specific biases, we apply a re-ranking stage using the Distribution-based Score Fusion method 

[5] an aggregation technique designed to normalize heterogeneous score distributions and emphasize consistent cross-

model evidence. Our proposed approach provides a unified and efficient strategy for improving retrieval accuracy without 

requiring additional training or architectural modifications. Experimental evaluations demonstrate that the combined 

system consistently outperforms individual models, offering improved robustness and more stable performance across 

varying image domains. 
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1. Introduction 

Image retrieval is a well-established problem in computer vision, focused on identifying and ranking images that are 

visually or semantically relevant from large-scale collections [1]. As digital image repositories continue to grow across 

diverse domains such as autonomous driving, robotics, remote sensing, cultural heritage preservation, and consumer-level 

visual search, there is an increasing demand for retrieval systems that remain robust under varying environmental, 

structural, and semantic conditions [6]. Unlike conventional classification tasks, image retrieval requires capturing fine-

grained relationships between images, where similarity may emerge from local structures, global layouts, or high-level 

semantic cues [7]. This complexity makes the problem inherently challenging and has motivated ongoing research into 

more expressive feature representations and more discriminative ranking strategies. 

Early deep-learning-based image retrieval systems drew heavily on handcrafted descriptor pipelines such as SIFT [8] 

Bag-of-Words (BoW) [9] and Fisher Vectors [10]. These classical methods leveraged geometric verification, local feature 

correspondences, and spatial consistency checks to improve robustness, yet they often struggled under significant 

viewpoint changes or severe variations in illumination. The advent of convolutional neural networks (CNNs) transformed 

the field by enabling the learning of image representations that surpassed manually engineered features. Within this shift, 

aggregation-based descriptors - particularly those inspired by the VLAD [11] framework - emerged as a dominant 

approach. NetVLAD [12] for example, demonstrated that differentiable cluster centers combined with aggregated local 

CNN features could produce compact, discriminative descriptors suitable for large-scale retrieval, spurring a range of 

extensions and variants. 

CosPlace [13] reformulates visual place recognition as a large-scale classification problem by grouping images into 

geographically coherent Cos-Groups and training with a margin-based cosine loss. This eliminates the need for pair or 

triplet mining, while a lightweight classifier attached during training is removed at inference, producing compact 

descriptors optimized for retrieval. Compared to traditional metric-learning pipelines, CosPlace reduces memory and 

training costs while maintaining strong retrieval performance. Its geographic grouping implicitly preserves spatial 

relationships, offering a streamlined yet effective alternative to VLAD-based or graph-dependent methods. 

Despite the efficiency and strong performance of CNN-based systems such as NetVLAD and CosPlace, their reliance 

on convolutional receptive fields limits their capacity to model long-range interactions and capture global scene structures - 

capabilities that are increasingly critical for modern retrieval and localization tasks. These limitations have driven the shift 

toward transformer-based architectures, which naturally encode global context through self-attention mechanisms and 

overcome the locality bias inherent to CNNs. VLAD-BuFF [14] integrates VLAD-style aggregation with transformers, 

achieving high accuracy on domain-specific datasets. It requires explicit training on target-domain data, which can prolong 

real-world deployment due to the need for data collection, labeling, and retraining, and may limit generalization to unseen 

environments. 

Transformer-based models have significantly advanced self-supervised retrieval tasks. SALAD [2] for instance, 

introduces a novel architecture that encourages consistency across augmented views, extracting discriminative features 

while preserving local-to-global correspondences. This enables the model to generalize well without relying on labeled 

data, improving robustness to domain shifts. CliqueMining [3] extends this idea by incorporating a relational mining 

strategy, where attention weights represent inter-patch and inter-image relationships. By constructing a graph of visually 

and geographically connected images, it forms clusters (cliques) that preserve fine-grained spatial distinctions and semantic 

coherence during training, without adding extra cost at inference time. MegaLoc [4] integrates multi-scale attention maps 

with structural reasoning modules, capturing both fine-grained details and broader contextual patterns. This improves geo-

localization and retrieval performance, addressing the limitations of CNN-based aggregation methods and offering 

enhanced robustness across diverse environments. 

In recent years, a number of works have explored fusion and re-ranking strategies in image retrieval to combine 

complementary strengths of different feature representations. Yang, et al. [15] proposed multi-feature fusion using 

diffusion on graphs constructed from different feature similarities, where graph weights are learned in a data-driven way 

without supervision Yang, et al. [15]. Yang, et al. [16] introduced DOLG, an end-to-end framework fusing orthogonal local 

and global features into a single compact descriptor [16]. Adaptive-weight fusion methods have also been proposed, in 

which unsupervised or supervised weights are assigned to each feature type depending on query-specific retrieval 

performance [17]. More recent works, such as Multi-FusNet, fuse features at multiple depths via self-attentive hashing 

coding for fine-grained retrieval [18]. These previous fusion strategies demonstrate the benefits of integrating 

heterogeneous representations to refine rankings or build richer embeddings. 

However, most of these approaches are designed as end-to-end fusion architectures, which require joint training and 

significant computational resources, and are often tightly coupled to specific backbone designs. This limits their flexibility 

when integrating independently trained state-of-the-art retrieval models. In contrast, score-level fusion provides a more 

modular and lightweight alternative, enabling the combination of multiple heterogeneous models without re-training. 

Although existing schemes such as Reciprocal Rank Fusion [19] and Relative Score Fusion [20] have demonstrated 

effectiveness in this setting, they largely rely on heuristic weighting or rank-level operations that ignore the underlying 

score distributions. To address this limitation, we adopt Distribution-Based Score Fusion [5] which explicitly models score 

distributions to achieve a more principled normalization and alignment across different retrieval outputs, resulting in more 

stable and robust retrieval performance. 

Building on this line of research, our proposed framework goes further by combining three state-of-the-art retrieval 

models - MegaLoc, SALAD, and CliqueMining - and employing Distribution-Based Score Fusion [5]. This approach 
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leverages the diversity of the individual models while mitigating their respective weaknesses, producing more robust and 

accurate image retrieval results. 

 

2. Materials and Methods  

 

 
Figure 1.  

Overview Proposal Image Retrieval Pipeline. 

 

Our pipeline consists of two main components: (1) the Descriptor Block and (2) the Fusion Block, which is presented 

in Figure 1. Features are extracted from the input images through the Descriptor Block, and the resulting descriptor vectors 

are queried against a descriptor vector database. These are then combined within the Fusion Block to select the best image 

pair. The Descriptor Block is responsible for capturing complementary visual cues from each image, producing robust 

embeddings suitable for retrieval. Meanwhile, the Fusion Block integrates the outputs of multiple models or feature types, 

enhancing the overall retrieval accuracy by leveraging their diverse strengths. 

 

2.1. Descriptor Block 

In this work, we propose a unified Descriptor Block architecture that integrates three state-of-the-art visual retrieval 

models – SALAD [2], CliqueMining [3], and MegaLoc [4] – within a single computational pipeline. The design introduces 

a partially shared Vision Transformer (ViT) backbone and a multi-branch specialization mechanism that reduces redundant 

computation while preserving the distinctive strengths of each model. The overall structure of the proposed architecture is 

illustrated in Figure 2. 

 

 
Figure 2.  

Descriptor Block Pipeline. 
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2.2. Shared Backbone 

Our architecture begins by forwarding the input image through a shared DINOv2 backbone [21] consisting of ViT 

Blocks 1 – 7. This shared component acts as a universal feature extractor that captures low- and mid-level visual cues, 

including texture patterns, local geometric structures, and coarse semantic information. Because these early layers are 

typically the most computationally expensive within transformer-based models, sharing them across all three branches 

significantly improves efficiency. Instead of executing three complete models independently, our approach performs the 

largest portion of the computation only once, enabling scalable multi-model fusion at inference time. 

 

2.3. Model Specific Descriptor 

Following the shared backbone, the pipeline splits into three branches, each corresponding to one of the state-of-the-art 

retrieval models. Although all branches operate on the same token sequence produced by Blocks 1 – 7, each branch 

maintains its own DINOv2 Blocks 7 – 12 and aggregator, preserving the distinctive characteristics and inductive biases of 

the individual models. This design allows the framework to retain the inherent strengths of each model while enabling 

parallel extraction of complementary visual representations. 

The three branches - MegaLoc, SALAD, and CliqueMining - process the shared features independently to generate 

their respective descriptors. MegaLoc focuses on geometric stability and spatial coherence, SALAD emphasizes robustness 

against noise and illumination variations, and CliqueMining captures high-order relational patterns among image patches. 

By maintaining these heterogeneous representations, the framework lays the foundation for combining the strengths of all 

three models, aiming to produce a more robust and discriminative descriptor for image retrieval without assuming that any 

single branch handles a unique type of information. 

 

2.4. Fustion Block 

 

 
Figure 3.  

Fusion Block Pipeline. 

 

Figure 3 illustrates the fusion step of our method. Each descriptor vector is first compared against its corresponding 

database of descriptor vectors using cosine similarity to measure the similarity between the query and database features. 

For each model, the top-k most similar pairs are selected through a pair matching step. The top-k matches from all three 

descriptor models are then combined in a distribution-based score fusion step, which integrates the individual similarity 

scores to leverage complementary strengths of each model. Finally, the fused scores are used to identify the best-scoring 

pair matches, resulting in a more robust and accurate retrieval outcome. 

 

2.5. Cosine Similarity Measure 

In each model, the Cosine similarity measure is used to assess the likeness between the query vector 𝑞𝑛 and all 

descriptor vectors 𝑑𝑖 ∈ 𝐷𝑛 . Cosine similarity is highly effective in high-dimensional feature spaces as it focuses on the 

orientation (angle) of the vectors, remaining unaffected by their magnitude. The similarity score 𝑆𝑛,𝑖 for channel 𝑛 is 

calculated as: 

𝑆𝑛,𝑖 =
𝑞𝑛 ∙ 𝑑𝑖

‖𝑞𝑛‖‖𝑑𝑖‖
  (1) 

 

After computing 𝑆𝑛,𝑖 for all vectors in the database, selects the 𝑘 data pairs with the highest raw similarity scores and 

passes their corresponding scores (𝑥𝑛,𝑘) to the normalization stage. 

 

2.6. Distribution-Based Score Normalization 

The raw scores 𝑥𝑛,𝑘 from each model are normalized independently before fusion. This method first requires 

transforming the raw scores 𝑥𝑛,𝑘 into a unified, normalized space using a statistical min-max approach. This 

transformation, carried out per channel, is bounded by a statistically significant range defined by the channel's estimated 
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mean 𝜇𝑛, standard deviation σn of the genuine distribution, and a statistical scaling factor 𝛼. The normalized score 𝑆𝑛,𝑘
′  for 

a raw score 𝑥𝑛,𝑘 from descriptor 𝑛 is calculated as: 

𝑆𝑛,𝑘
′ =

𝑥𝑛,𝑘 − (𝜇𝑖 − 𝛼𝜎𝑖)

(𝜇𝑖 + 𝛼𝜎𝑖) − (𝜇𝑖 −  𝛼𝜎𝑖)
  (2) 

 

2.7. Final Matching Decision 

After normalization, the top-k lists from all channels (now containing normalized scores 𝑆𝑛,𝑘
′ ) are aggregated using the 

Max Aggregation technique. The final fusion score 𝑆𝑓𝑖𝑛𝑎𝑙(𝑑𝑗) for a candidate vector 𝑑𝑗 that appears in one or more top-k 

lists is defined as the summation of its corresponding normalized scores 𝑆𝑛,𝑗
′  from all channels 𝑛 ∈ E = (1, 2, 3) in which it 

was present: 

𝑆𝑓𝑖𝑛𝑎𝑙(𝑑𝑗) = ∑ 𝑤𝑛 ∗ 𝑆𝑛,𝑗
′

𝑛∈𝐸   where ∑ 𝑤𝑖𝑛∈𝐸 = 1 (3) 

If 𝑑𝑗 does not appear in the top-k list of channel 𝑛, 𝑆𝑛,𝑗
′  is considered zero for that channel. This strategy effectively 

prioritizes candidates that exhibit high similarity across multiple, statistically normalized descriptor views. 

The fused score 𝑆𝑓𝑖𝑛𝑎𝑙 represents the overall confidence of each candidate in the merged set C. The final matching 

decision is the Best-score Pair Matching, where the system selects the single candidate 𝑑𝑗 that yields the maximum final 

fused score: 

 𝑑𝑏𝑒𝑠𝑡 = max
dj∈C

 𝑆𝑓𝑖𝑛𝑎𝑙(𝑑𝑗)  (4) 

This method ensures that the final selection is the candidate with the strongest aggregated evidence across all parallel 

channels. 

 

3. Results and Discussion 
In this section, we describe the datasets used in our experiments. Our approach is denoted as F(a, b, c), where a, b, and 

c indicate the contribution weights of SALAD, CliqueMining, and MegaLoc, respectively. The statistical scaling factor is 

fixed at 𝛼 = 3.0, as it provides a good balance between score discrimination and numerical stability based on preliminary 

experiments. Additionally, we set the number of top retrieved candidates to k = 10 in order to ensure sufficient candidate 

diversity while maintaining reasonable computational efficiency during the re-ranking stage. We evaluate the proposed 

method against the three individual baselines - MegaLoc, CliqueMining, and SALAD - across all datasets. 

 

3.1. Benchmark Dataset 

3.1.1. Amster Time Dataset 

AmsterTime Dataset [22] is a visual place recognition dataset containing 2,500 curated images from Amsterdam, 

pairing historical archival images with modern street-view images (Mapillary). The image pairs capture the same location 

with different cameras, viewpoints, and appearances. Evaluation includes verification and retrieval tasks, where 

ResNet‑101 pre-trained on the Landmarks dataset achieves 84\% accuracy for verification and 24\% mAP for retrieval. A 

subset of images with landmark labels is also provided for classification and visual explanation tasks. 

 

3.1.2. SPED Dataset 

SPED Dataset [23] is a large-scale place recognition dataset constructed from the AMOS archive containing images 

from approximately 30,000 outdoor cameras worldwide. From these, 2,543 cameras were selected, and all images captured 

in February 2014 and August 2014 were downloaded, resulting in about 2.5 million images. Each camera provides images 

taken every 30 minutes across two months with strong seasonal differences, allowing evaluation under long-term variations 

such as day–night cycles, lighting changes, and seasonal appearance shifts. The dataset covers diverse outdoor 

environments, including forests, rural roads, and urban scenes. 

 

3.1.3. MSLS Dataset 

MSLS Dataset [24] is a large-scale place recognition dataset containing more than 1.6 million images collected from 

the Mapillary platform. The data spans 30 major cities across six continents, captured by hundreds of different cameras 

over a nine-year period. The sequences exhibit substantial variations in viewpoint, appearance, season, and capture time. 

All images are geo-located with GPS and compass information and include high-level attributes such as road type, making 

the dataset suitable for lifelong and large-scale place recognition benchmarks. 

 

3.1.4. Nordland Dataset 

Nordland Dataset [25] is a seasonal place recognition dataset consisting of video recordings of a 728 km train journey 

between Trondheim and Bodø in Norway. The full 10-hour journey was recorded four times, once in each season, 

providing four traversals of the same route with dramatic appearance changes. Videos were captured at 25 fps in 

1920×1080 resolution using a Sony XDcam with a Canon HJ15ex8.5B KRSE-V lens. GPS readings were recorded at 1 Hz 

and time-synchronized to the video, enabling frame-accurate ground truth across all seasons. The dataset covers natural 

landscapes, varying weather conditions, and occasional urban segments. 
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3.1.5. Pittsburgh Dataset 

Pittsburgh Dataset [26] is constructed from 10,586 Google Street View panoramas of the Pittsburgh area, from which 

254,064 perspective images (640×480) are generated. Each panorama (6656×3328) is converted into 24 perspective views 

using 2 yaw and 12 pitch directions. For evaluation, 24,000 query images are generated from 1,000 panoramas taken in a 

different capture session, providing challenging variations in viewpoint, illumination, and season. All query images have 

ground-truth GPS positions, enabling precise recall-based place recognition evaluation. 

 

3.1.6. Tokyo247 Dataset 

Tokyo247 Dataset [27] is a large-scale place recognition dataset captured in Tokyo with 1,125 query images taken by 

Apple iPhone5s and Sony Xperia at 125 distinct locations. At each location, images were captured from 3 different viewing 

directions and at 3 times of day. Ground truth GPS coordinates were manually annotated with an estimated error below 5 

meters. For evaluation, a subset of 315 query images within an area of approximately 1,600m × 1,600m is used. 

 

3.2.  Experimental 

3.2.1. Evaluation Metrics 

We use Recall@K (K ∈ (1, 5, 10)) as our evaluation metric, considering VPR [28] as a coarse initial retrieval step to 

facilitate the application of more precise metric localization and mapping techniques. For all datasets, ground-truth 

reference images for each query are defined within a 25 m localization radius. During inference, we resize images to 

224×224 for the CliqueMining branch and to 322×322 for MegaLoc and SALAD, following the original configurations 

used by these models. 

 

3.2.2. Quantitative Evaluation 

Across the three evaluation settings - R@1, R@5, and R@10 - the performance comparisons reveal several important 

trends regarding the strengths and limitations of individual models and the significant benefits introduced by the fusion 

approach. 

First, the standalone models (MegaLoc, SALAD, and CliqueMining) each demonstrate strong performance on specific 

datasets, but their behavior varies notably across conditions. MegaLoc generally performs best on structured urban datasets 

such as Pitts250k, Pitts30k, and Tokyo247, where its global descriptors provide high discrimination. SALAD excels on 

SPED, likely due to its robustness to viewpoint and appearance changes. CliqueMining shows competitive performance on 

MSLS and Nordland, benefiting from its mining-based feature refinement. However, none of these models consistently 

dominate across all datasets. Each exhibits weaknesses: SALAD underperforms on AmsterTime, CliqueMining drops 

significantly on SPED, and MegaLoc occasionally trails the others on more challenging cross-condition environments such 

as MSLS. 

In contrast, the fusion models - F(0.2, 0.3, 0.5) and F(0.2, 0.4, 0.4) - show a more balanced and stable performance 

profile across all benchmarks. For example, on AmsterTime, the fusion variants achieve the highest scores among all 

methods. On Nordland and SPED, the fusion models again match or exceed the strongest single-model results, especially in 

Nordland. This robustness is especially notable on datasets that the individual child models were not trained on: in these 

cases, the fusion models consistently outperform their standalone counterparts, demonstrating better generalization and 

resilience to domain shifts. 

Conversely, on datasets where the child models were trained, we explicitly tailor the fusion weights based on each 

model’s relative performance - assigning higher weights to the strongest model and proportionally smaller weights to the 

others. This adaptive weighting strategy allows the fusion variants to retain the strengths of the best-performing model 

while still benefiting from complementary signals from the remaining ones. The resulting consistency is further emphasized 

at higher recall levels (R@10), where the fusion models frequently deliver the best or second-best performance overall. 

More importantly, the qualitative implication is that the fusion strategy does not merely average the strengths of the 

constituent models - it actively compensates for their weaknesses. Distribution-based Score Normalization plays a central 

role here. By adaptively weighting each model based on their complementary characteristics, Distribution-based Score 

Normalization enables the fused system to recover correct matches that individual models fail to detect. This is most 

evident in datasets with severe visual changes (seasonal shifts, day-night variations, motion blur), where single descriptors 

may lose discriminative power. Distribution-based Score Normalization leverages multiple feature sources and blends them 

in a way that maximizes agreement where possible while allowing a stronger model to dominate when others are uncertain. 

As a result, the fusion system exhibits an ability to “correct” errors from its constituent models, producing predictions that 

none of the individual methods could achieve on their own. 

 
Table 1. 
Comparisons of various methods on popular datasets - R@1. 

Dataset AmsterTime SPED MSLS Nordland Pitts250k Pitts30k Tokyo247 

MegaLoc 63.0 89.8 90.9 94.2 96.3 94.0 97.1 

SALAD 85.2 91.8 88.1 86.0 94.9 92.2 94.0 

CliqueMining 52.4 87.6 91.0 92.4 95.1 96.6 94.3 

F(0.2,0.3,0.5) 63.9 91.8 92.0 97.0 96.6 94.2 97.8 

F(0.2,0.4,0.4) 63.4 92.1 92.0 97.0 96.5 94.0 96.8 
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Table 2. 

Comparisons of various methods on popular datasets - R@5. 

Dataset AmsterTime SPED MSLS Nordland Pitts250k Pitts30k Tokyo247 

MegaLoc 84.2 95.1 94.9 97.8 98.9 97.4 99.7 

SALAD 78.6 96.2 93.8 93.5 98.4 96.2 97.5 

CliqueMining 75.3 94.5 94.5 97.1 98.6 96.6 98.4 

F(0.2,0.3,0.5) 85.9 96.5 95.2 98.9 99.0 97.4 99.4 

F(0.2,0.4,0.4) 84.6 96.9 95.2 98.9 99.0 97.3 99.0 

 
Table 3. 
Comparisons of various methods on popular datasets - R@10. 

Dataset AmsterTime SPED MSLS Nordland Pitts250k Pitts30k Tokyo247 

MegaLoc 88.5 96.2 95.8 98.7 99.3 98.3 99.7 

SALAD 83.8 96.7 95.1 95.7 99.1 97.4 97.5 

CliqueMining 80.4 95.9 95.4 98.3 99.3 97.7 98.4 

F(0.2,0.3,0.5) 89.3 97.2 96.0 99.4 99.4 98.3 99.4 

F(0.2,0.4,0.4) 89.0 97.0 96.0 90.4 99.4 98.3 99.4 

 

4. Conclusion 

In this work, we introduced a unified multi-model fusion framework that leverages the complementary strengths of 

MegaLoc, SALAD, and CliqueMining to achieve more robust and accurate image retrieval. By incorporating a partially 

shared DINOv2 backbone and a modular Descriptor Block, our system efficiently extracts diverse feature representations 

without incurring the high computational cost of running three independent models. The proposed Distribution-based Score 

Fusion method further enhances reliability by normalizing heterogeneous similarity distributions and emphasizing 

candidates consistently supported across models. 

Extensive experiments on a wide range of challenging benchmarks - including AmsterTime, SPED, MSLS, Nordland, 

Pittsburgh, and Tokyo247 - demonstrate that the fused system consistently outperforms individual state-of-the-art 

approaches. These improvements highlight the value of integrating diverse visual cues and model-specific inductive biases 

within a unified framework. 

Overall, our results suggest that multi-model fusion is a practical and scalable strategy for enhancing retrieval 

performance, especially in scenarios characterized by substantial variations in viewpoint, illumination, and environmental 

conditions. Future work may explore dynamic weighting strategies, end-to-end trainable fusion mechanisms, and further 

optimization of shared computation to push the boundaries of large-scale visual retrieval. 
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