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Abstract 

With the rapid growth of AI-related industries, the need for reducing and optimizing energy consumption in large-scale 

computational resources, such as supercomputers, has become increasingly important. This study focuses on 

supercomputers listed in the Green 500, categorizing existing benchmarking evaluation variables into input and output 

factors. An energy efficiency objective function was introduced, and DEA was conducted using BCC and SEM models. 

The study analyzed the relative efficiency levels among supercomputers and identified factors and levels of potential 

efficiency improvements. The results provide insights into the performance factors of individual supercomputers and their 

potential for improvement. Furthermore, by comparing the energy efficiency evaluated by the Green 500 with the results of 

DEA, it demonstrated the potential for utilizing DEA as a new means for efficiency improvement. It also highlighted the 

necessity of a comprehensive evaluation that incorporates various performance factors, rather than a simple efficiency 

assessment based solely on energy consumption. 
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1. Introduction 

As the AI industry continues to evolve, the exponential growth in data volume and complexity demands increasingly 

powerful computational capabilities. This is driving significant advancements in supercomputing technologies, enabling 

rapid processing and analysis of large datasets essential for training and deploying sophisticated AI models. As a result, the 

global supercomputer market, valued at $1.9 billion in 2023, is expected to grow at a compound annual growth rate 

(CAGR) of 18.97%, reaching $6.43 billion by 2030. This rapid expansion reflects the strategic importance of 
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supercomputing infrastructure in various domains, including scientific research, national security, healthcare, and industry-

driven AI innovation. In this competitive landscape, countries, corporations, and research institutions are heavily investing 

in the development and deployment of high-performance computing systems to establish leadership in this field. The 

introduction of El Capitan in November 2024, boasting an Rmax of 2,746 PFLOPS, underscores the race to achieve 

unprecedented computational speeds. Alongside, global distribution reveals significant disparities, with the United States 

housing 172 supercomputers, followed by 62 in China and 41 in Germany. This distribution highlights the geopolitical and 

strategic nature of supercomputing capabilities. However, the growing adoption of supercomputers has raised concerns 

about their environmental impact, particularly in terms of energy consumption. In Germany, data centers hosting 

supercomputing infrastructure consume approximately 4% of the nation’s total electricity. Similarly, Frontier, the world’s 

second-most powerful supercomputer, requires a staggering 22.7 MW of electricity, a demand comparable to that of a 

medium-sized solar power plant. Addressing such challenges requires a multi-faceted approach that combines technological 

innovation with sustainable operational strategies. Current advancements in energy-efficient hardware and cooling 

technologies are paving the way for more sustainable supercomputing. For instance, NVIDIA’s Grace Hopper processor 

incorporates energy efficiency optimizations, and LUMI employs pre-cooling systems that utilize natural airflow while 

repurposing waste heat for local district heating grids. Liquid cooling technologies, such as ManicoreSoft’s Deep Gadget, 

further eliminate the need for traditional air-conditioning systems, significantly reducing energy consumption. These 

technological strides demonstrate the potential for reducing supercomputing's environmental footprint. Despite these 

advancements, the scope of improving supercomputing energy efficiency extends beyond hardware and cooling systems. 

Operational strategies, inspired by other industries such as electric vehicles, offer promising avenues for optimization. In 

the electric vehicle sector, energy efficiency is achieved not only through improved components, such as motor controllers 

and battery systems, but also through meticulous analysis of configurations, including battery capacity, driving speed, and 

aerodynamics. Analogously, supercomputers could benefit from a systems-level approach that investigates the interplay of 

workload distribution, scheduling algorithms, data transfer efficiency, and cooling system configurations. Moreover, the 

integration of AI-driven monitoring systems can optimize energy consumption in real time. Machine learning algorithms 

can predict computational loads, enabling dynamic allocation of resources to minimize energy usage during periods of low 

demand. Research into power-aware scheduling policies can ensure that performance requirements are met while reducing 

operational costs. For instance, studies have demonstrated that dynamic voltage and frequency scaling (DVFS) techniques 

can effectively reduce energy consumption without compromising computational throughput. In addition, collaborations 

between academia, industry, and government are essential to foster the development of comprehensive energy-efficiency 

frameworks. Standardizing metrics for measuring and comparing supercomputing energy efficiency will be critical to 

benchmarking progress and identifying best practices. Furthermore, international cooperation can play a pivotal role in 

addressing global challenges associated with the sustainability of supercomputing infrastructures, encouraging knowledge-

sharing and co-development of innovative solutions. As the reliance on supercomputers grows, the need to balance 

performance and sustainability becomes increasingly urgent. The path forward lies in embracing a holistic approach that 

combines cutting-edge technology with strategic planning and policy development. By addressing both technical and 

operational aspects, the supercomputing community can ensure that advancements in computational power are achieved in 

an environmentally responsible and economically viable manner. 

This paper consists of 4 chapters. Chapters 1 and 2 analyze the background of the theory and previous research to 

derive the necessity and academic value of the study. Chapter 3 explains the research procedure and research data, and 

presents the efficiency analysis results. Finally, in the conclusion of Chapter 4, the results are summarized, and the 

implications obtained from the research results and the limitations of this study are discussed. 

 

2. Literature Review and Theoretical Background 
León-Vega, et al. [1] provides insight into the comprehensive behavior of high-performance computing (HPC) systems 

by examining the impact of executed instructions on overall power consumption. We propose two new mathematical models 

to estimate the energy consumption of a process, which are based on a normalized vector of total node energy, process usage, 

and probability distributions for the instruction types of CPU and GPU processes. This approach enables energy accounting 

for specific processes without the need for isolation of individual processes León-Vega, et al. [1]. Prieto, et al. [2] 

investigates the evolution of this parameter by analyzing high-performance computers from 2008 to 2023 and presents 

results comparing it to Koomey's law. Comparing the two results, we conclude that energy efficiency will continue to grow 

exponentially over the study period and into the foreseeable future, but at a slower rate than suggested by Koomey's law 

(maximum energy efficiency every 1.57 years). Instead of doubling, it doubles every 2.29 years Prieto, et al. [2]. Carastan-

Santos, et al. [3] proposes a method to predict and leverage the power consumption of HPC workloads. This method aims to 

reduce the power consumption of the supercomputer while maintaining the management (scheduling) performance of the 

Resource Task Management System (RJMS). The proposed method leverages workload submission logs and power 

monitoring data and uses a mix of lightweight power prediction methods and a heuristic approach inspired by classic EASY 

Backfilling Carastan-Santos, et al. [3]. Erol, et al. [4] proposes a new modular approach to standard shrouded packaging. 

This approach aims to achieve better thermo-mechanical performance and act as a reworkable thermal plug. This approach, 

called CoolStar, uses an ultra-low modulus gel-like gap-filter to attach a fractal heat spreader to a liquid cooler. This paper 

presents a proof of concept, showing that this is a promising approach for addressing thermo-mechanical stresses at the 

system level Erol, et al. [4]. Naduvilakath-Mohammed, et al. [5] presents a numerical model of a compact vapor compression 

refrigeration (VCR) system that cools liquid coolant in a secondary pump circuit used to cool high-performance CPUs. The 

model utilizes a physical approach and an iterative algorithm to solve the coupled nonlinear equations of the cooling cycle 
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and single-phase cooling loop Naduvilakath-Mohammed, et al. [5]. Song [6] investigates various techniques for optimizing 

chip performance and energy efficiency through design innovation, materials science, and strategic management of the 

manufacturing process. By focusing on integrating these innovations into current manufacturing practices, we aim to 

minimize energy consumption while meeting the demands of HPC. Key innovations include multicore designs and 

heterogeneous computing, while advances in materials such as graphene and silicon carbide are also reviewed. Additionally, 

manufacturing technologies such as extreme ultraviolet lithography (EUVL) and 3D additive processes are analyzed [6]. A 

review of previous studies reveals significant research on improving the energy efficiency of supercomputers, focusing on 

cooling systems, sealed package technologies that enhance thermo-mechanical performance, and management technologies 

that predict power consumption under varying workloads while maintaining performance. Additionally, there has been 

research on models for measuring and evaluating energy consumption. Key insights from these studies are as follows: First, 

most technological developments have focused on single factors. However, multiple factors influence energy efficiency, and 

these factors are interconnected, collectively impacting energy consumption. Furthermore, energy efficiency is mutually 

influenced by computational performance. Thus, strategies for improving the energy efficiency of supercomputers must 

comprehensively account for multiple factors simultaneously. An optimal strategy should be formulated by considering all 

relevant factors, and improvement goals for each factor should be established based on this strategy. 

The challenge lies in reconciling the demands of high computational performance with sustainability objectives, 

especially as workloads diversify with the increasing adoption of AI applications. Enhanced cooling solutions, efficient 

scheduling algorithms, and energy-aware hardware design must be complemented by comprehensive benchmarks such as the 

Green500. Moreover, adaptive strategies leveraging machine learning could dynamically optimize energy use across varying 

workloads, ensuring a balance between power efficiency and computational throughput. Prieto, et al. [2] also observed that 

the rate of technological advancements in energy efficiency has slowed compared to Koomey’s Law, highlighting the urgent 

need for multifaceted approaches. In light of this, this paper analyzes comprehensive strategies for improving energy 

efficiency by utilizing key factors related to computational performance from the Green500 benchmarking metric data. A 

synergistic approach involving technical innovation, operational adjustments, and policy-level interventions is essential to 

ensure sustainable development in the supercomputing domain. 

DEA models are divided into several models depending on the assumptions and perspectives on efficiency, and the most 

widely used models are the Constant Returns to Scale (CRS) model called CCR and the Variant Returns to Scale (VRS) 

model called BBC. These models are divided into multiplier models, ratio models, and envelope models according to the 

optimization method of the objective function representing efficiency, and this paper uses an envelope model that provides 

various information in terms of interpreting the results. First, the input-directed CCR envelope model is analyzed by focusing 

on Slack, which implies additional room for improvement to reach the state above the efficiency boundary. It can be 

described as a model that finds the smallest input level 𝜃 by reducing all m inputs by a certain percentage while maintaining 

an output level that is at least equal to or greater than the current output level. A mathematical representation of this model in 

terms of linear programming would look like Equations 1-4. 𝑥, 𝑦 are the inputs and outputs of a particular DMU (Decision 

Making Unit), and 𝜆 is the weight assigned to each DMU. After creating an efficiency boundary using the linear combination 

of inputs ∑ 𝑥𝑗𝑖𝜆𝑗
𝑛
𝑗=1  and outputs ∑ 𝑦𝑗𝑟𝜆𝑗

𝑛
𝑗=1 , we impose the constraint that the output of a DMU is less than or equal to the 

output of this efficiency boundary. And the input is constrained to be greater than or equal to the input above the efficiency 

boundary. At this time, the value that reduces the distance from the efficiency boundary is calculated as the efficiency score 

𝜃. 

𝑀𝑖𝑛 𝜃                                                                        (1) 

𝑠. 𝑡.  𝑥𝑘𝑖𝜃 ≥ ∑ 𝑥𝑗𝑖𝜆𝑗   (𝑖 = 1,2, ⋯ , 𝑚)𝑛
𝑗=1                     (2) 

∑ 𝑦𝑗𝑟𝜆𝑗
𝑛
𝑗=1 ≥ 𝑦𝑘𝑟   (𝑟 = 1,2, ⋯ , 𝑠)                             (3) 

𝜆𝑗 ≥ 0. (𝑗 = 1,2, ⋯ , 𝑛)                                              (4) 

In other words, the objective function of the DMU is the problem of minimizing 𝜃. If 𝜃 = 1, the DMU is efficient 

because there are no more inputs to reduce, and if 𝜃 < 1, the DMU is inefficient because there is room to reduce inputs.  

Next, we need to maximize the sum of the input and output slack while maintaining the efficiency level. This is done by 

using the current input and output levels and the difference between input and output above the efficiency boundary to satisfy 

the following conditional Equations 5-7. The margins of the 𝑖-th input and 𝑗-th output factors are expressed as 𝑠𝑖
−, 𝑠𝑟

+. If 𝜃 is 

1 and w is 0, it is judged as a DMU that is efficient and satisfies strong efficiency with no slack. 

𝑀𝑎𝑥 𝑤 =  ∑ 𝑠𝑖
−𝑚

𝑖=1 + ∑ 𝑠𝑟
+𝑠

𝑟=1                                    (5) 

𝑠𝑖
− = 𝑥𝑘𝑖𝜃∗ − ∑ 𝑥𝑗𝑖𝜆𝑗

𝑛
𝑗=1                                             (6) 

𝑠𝑖
+ = ∑ 𝑦𝑗𝑟𝜆𝑗 − 𝑦𝑘𝑟

𝑛
𝑗=1                                                (7) 

Second, the input-directed BBC envelope is given by Equations 8-12. Compared to the CCR envelope, the constraint 
∑ 𝜆𝑗

𝑛
𝑗=1 = 1 is added. 

𝑀𝑖𝑛 𝜃𝑘 − 𝜖(∑ 𝑠𝑖
−𝑚

𝑖=1 + ∑ 𝑠𝑟
+𝑠

𝑟=1  )                                   (8) 

𝑠. 𝑡.  𝜃𝑥𝑖𝑘 − ∑ 𝑥𝑗𝑖𝜆𝑗 − 𝑠𝑖
− (𝑖 = 1,2, ⋯ , 𝑚)𝑛

𝑗=1                    (9) 

𝑦𝑟𝑘 − ∑ 𝑦𝑗𝑟𝜆𝑗
𝑛
𝑗=1 + 𝑠𝑟

+  (𝑟 = 1,2, ⋯ , 𝑠)                          (10) 

∑ 𝜆𝑗
𝑛
𝑗=1 =1                                                                           (11) 

𝜆𝑗 ≥ 0, 𝑠𝑖
− ≥ 0, 𝑠𝑖

+ ≥ 0                                                         (12) 

Imposing the constraint 0 ≤ ∑ 𝜆𝑗
𝑛
𝑗=1 ≤ 1 assumes a declining return to scale (DRS) and imposing ∑ 𝜆𝑗

𝑛
𝑗=1 ≥ 1 assumes 

an increasing return to scale (IRS) [7-10]. 
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The Scale efficiency (SE) is a useful metric that can be obtained from the BBC model and can be defined as the 

following Equation 13. SE takes on values greater than 0 and less than 1, with values closer to 1 indicating no efficiency 

losses due to scale. In the case of harvest invariance to scale, the SE is equal to 1, indicating that the DMU is at the most 

optimal scale level. 

𝑆𝐸𝑘 = 𝐶𝐶𝑅(𝜃𝑘
∗) 𝐵𝐶𝐶(𝜃𝑘

∗)⁄                                                                (13) 

 

The super-efficiency model (SEM) solves the problem that the previous models have: when many DMUs have an 

efficiency value of 1, it is not possible to evaluate the relative value between them. The super-efficiency model can be 

applied to both CCR and BBC models, but only the SEM of the BBC model will be analyzed [11]. 

 

3. Energy Efficiency Analysis 
3.1. Research Procedure 

The research procedure was meticulously designed to ensure a comprehensive analysis of energy efficiency in 

supercomputers. The foundational step involved obtaining data from the Green500 list, which ranks the most energy-

efficient supercomputers globally. Variables relevant to computing performance and energy efficiency were meticulously 

selected from this dataset, ensuring alignment with the study's objectives. The analysis focused on 10 supercomputers with 

high priority, meeting specific conditions based on their architecture, operational characteristics, and energy efficiency 

metrics. The detailed selection process is elaborated upon in the Research Data chapter. The methodological framework 

employed Data Envelopment Analysis (DEA), specifically using the BCC (Banker-Charnes-Cooper) model, to evaluate the 

relative efficiency of Decision-Making Units (DMUs). The DEA approach identified inefficient DMUs and provided 

quantitative insights into potential improvement measures. For efficient DMUs, a Structural Equation Model (SEM) 

analysis was conducted to explore deeper relationships among variables and derive actionable implications for enhancing 

energy efficiency. The DEA analysis was executed using Banxia Software’s Frontier Analyst program, a specialized tool 

for benchmarking and efficiency analysis. This ensured precise modeling of input-output relationships and reliable 

efficiency scores. To support this, descriptive statistics and correlation analysis were performed using IBM SPSS, enabling 

a clearer understanding of variable distributions and interdependencies. These complementary methods facilitated a robust, 

multi-dimensional analysis of energy efficiency and performance metrics in supercomputers. 

 

3.2. Research Data 

Table 1 presents the variables selected for the efficiency analysis of supercomputers. These variables were derived 

from the Green500 list, published in November 2024 [12] which provided a rich dataset encompassing critical attributes of 

energy-efficient supercomputers. A total of seven variables were chosen, carefully categorized into input and output 

variables, and coded from A to G for clarity and effective presentation in the subsequent analysis. The input variables were 

selected based on their direct relationship to power consumption and computational performance. 

• Total Number of Cores: As the primary electricity consumers in a supercomputer, the total number of cores 

directly correlates with energy usage. 

• Number of Accelerator Cores: These cores, often GPUs or specialized accelerators, are known for their high 

power consumption and their critical role in enhancing computational speed. 

• Number of Cores per Socket: This variable reflects the density of computational resources and their impact on 

power distribution and thermal efficiency. 

• Data Processing Speed of Cores: High processing speeds are associated with greater computational throughput but 

also higher energy requirements. 

• Power Supply Capacity (Power): The size of the power supply indicates the system's capability to sustain 

operations under peak loads, ensuring that energy demands are consistently met. 

• Output Variables: 

Two key output variables were selected to evaluate performance and energy efficiency comprehensively: 

• Energy Efficiency: This metric represents the ratio of computational work done per unit of energy consumed, 

providing a direct measure of efficiency. 

• Rmax Metric: As a widely recognized performance indicator in HPC systems, Rmax measures the maximum 

achievable performance (in PFLOPS) under ideal conditions. Including Rmax enabled the study to examine the 

interplay between energy efficiency and performance. 

• Selection of Decision-Making Units (DMUs): 

Table 2 details the DMUs chosen for the analysis. From the top 100 systems listed in the Green500, 10 supercomputers 

were selected based on specific criteria. These criteria prioritized systems with a cluster architecture and those equipped 

with both CPUs and accelerators, as such configurations are representative of modern HPC systems. The selection also 

considered the ranking of energy-efficient systems, ensuring that the analysis captured a diverse range of high-performing 

and energy-efficient supercomputers. The selected DMUs included notable systems such as JEDI, JETI, and Henri, which 

exhibit cutting-edge architectures and operational strategies. 

By combining input variables that represent energy-consuming components with output variables that reflect energy 

efficiency and performance, this research provides a nuanced understanding of the factors influencing supercomputer 

efficiency. Additionally, focusing on systems with hybrid architectures enables insights into the unique challenges and 
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opportunities presented by modern HPC designs. The selection process not only ensures relevance to the study's objectives 

but also lays the groundwork for robust, data-driven recommendations for improving energy efficiency in the HPC sector. 

 
Table 1.  
Variable list. 

 Name Unit Code 

Input Total cores Ea A 

Accelerator cores Ea B 

Power KW C 

Processor speed MHz D 

Cores per socket Ea E 

Output Rmax TFlop/s F 

Energy efficiency GFlops/Watts G 

 
Table 2.  

DMU list. 

DMU Rank Name 

1 1 JEDI 

2 6 JETI - JUPITER exascale transition instrument 

3 8 Henri 

4 27 Snellius phase 3 GPU 

5 28 CEA-HE 

6 31 MareNostrum 5 ACC 

7 41 Gefion 

8 49 Dhabi Supercomputer 

9 60 MeluXina - accelerator module 

10 66 JUWELS booster module 

 

Table 3 presents the descriptive statistics for seven datasets (A–G), including the sample size (N), range, minimum and 

maximum values, mean, standard deviation, and variance. These statistics summarize the central tendency, dispersion, and 

variability of the data. 

 
Table 3.  

Descriptive Statistics.  
N Range Min. Max. Avr SD 

A 10 654752.0 8288.0 663040.0 233516.8 227410.1 

B 10 583968.0 7392.0 591360.0 189019.2 193017.7 

C 10 4114.8 44.1 4158.9 1115.6 1271.1 

D 10 1000.0 2000.0 3000.0 2640.0 347.9 

E 10 48.0 24.0 72.0 48.8 20.1 

F 10 172418.0 2882.0 175300.0 47011.0 54171.7 

G 10 47.7 25.0 72.7 49.2 16.5 

 

3.3. Analysis Results 

The input-oriented efficiency analysis results for improving energy efficiency are shown in Table 4. The BCC analysis 

results indicate that only DMU5 is inefficient, with an efficiency score of 0.915. Its reference group (peers) includes 

DMU2, 7, 8, and 9, and the RTS is in an IRS (Increasing Returns to Scale) state.  

 
Table 4.  

DEA(BCC) Results (Input-oriented model). 

DMU Name TE SE SEM Peers 

1 JEDI 1.000 CRS 1.000 - 

2 JETI 1.000 CRS 1.000 - 

3 Henri 1.000 CRS 0.236 1 

4 Snellius phase 3 GPU 1.000 IRS 0.102 2, 3, 6, 7, 9 

5 CEA-HE 0.915 IRS 0.092 2, 7, 8, 9 

6 MareNostrum 5 ACC 1.000 CRS 1.000 - 

7 Gefion 1.000 CRS 0.122 3, 6, 8 

8 Dhabi supercomputer 1.000 IRS 0.109 3, 9 

9 MeluXina - Accelerator module 1.000 IRS 0.113 3, 6, 7 

10 JUWELS booster module 1.000 IRS 0.133 3, 6 
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Therefore, DMU5 should expand its scale to improve efficiency, as the increase in outputs would be larger than the 

increase in inputs. Looking at the SE values, which indicate the relative efficiency between efficient groups, DMU1, 2, and 

6 were found to be the most efficient. In contrast, DMU3 (0.236) and DMU10 (0.133) showed significant differences in 

efficiency values compared to these efficient DMUs. Therefore, DMU3, 4, 7, 8, 9, and 10 also need to examine their 

Potential Improvement (PI%) to enhance efficiency. 

The output-oriented efficiency analysis results are shown in Table 5. Similar to the input-oriented analysis, DMU5 was 

found to be inefficient (reference group: 1, 2). The RTS is in a DRS (Decreasing Returns to Scale) state, meaning 

efficiency can be improved by reducing the scale. Looking at the SE (Scale Efficiency) values, there was a significant 

difference between the efficient DMUs (3, 6, 7, 8, 9, 10) and the inefficient DMUs (1, 2, 4), which is similar to the input-

oriented results. Therefore, it is also meaningful to check Potential Improvement (PI%) to enhance efficiency. 

 
Table 5.  

DEA(BCC) results (Output-oriented model) 

DMU Name TE SE SEM Peers 

1 JEDI 1.000 CRS 0.111 2, 3 

2 JETI 1.000 CRS 0.126 1, 5, 6 

3 Henri 1.000 CRS 1.000 - 

4 Snellius phase 3 GPU 1.000 DRS 0.118 3, 6, 9 

5 CEA-HE 0.822 DRS 0.082 1, 2 

6 MareNostrum 5 ACC 1.000 CRS 1.000 - 

7 Gefion 1.000 CRS 1.000 - 

8 Dhabi supercomputer 1.000 DRS 1.000 - 

9 MeluXina - Accelerator module 1.000 DRS 1.000 - 

10 JUWELS booster module 1.000 DRS 1.000 - 

 

In efficiency analysis, the contribution of input and output variables quantifies the extent to which each input and 

output variable contributes to overall efficiency. The contribution rates of input and output variables for the inefficient 

DMU5 are shown in Table 6. The benchmarking peers were selected as JEDI and JETI. In the input-oriented case, the input 

variable D had the highest contribution to efficiency at 61.97%, followed by C at 33.99% and B at 4.04%. Variables A and 

E showed no contribution. For the output variable, G contributed 100%. In the output-oriented case, the contribution of 

input variables showed that C had a significantly higher value at 97.15% compared to D at 2.84%. The output variable G 

again contributed 100%, as in the input-oriented case. Results where a single variable exerts extreme influence are not 

considered. 

 
Table 6.  

Input, output contribution. 

DMU Variable 
Contributions (%) Peers 

Input-Oriented Output-Oriented 2, 7, 8, 9 

5 

Input 

A - - 

B 4.04 - 

C 33.99 97.15 

D 61.97 2.84 

E - - 

Output 
F - - 1, 2 

G 100.00 100.00 

 

The Potential Improvement (PI) results are shown in Table 7. When considering only the analysis results, the input-

oriented model shows that all input variables have potential for improvement through reduction, with E showing the largest 

improvement potential at -23.59%. For the output-oriented model, it would be ideal to increase F by 30.85% and G by 

21.62% compared to the reference group. 

 
Table 7.  

PI results (DMU 5). 

Variable Input-oriented model Output-oriented model 

Actual Target PI (%) Actual Target PI (%) 

A 251856 202650 -19.54 251856 238391 -5.35 

B 72 66 -8.5 72 72 - 

C 1233 1128 -8.5 1233 1233 - 

D 3000 2745 -8.5 3000 3000 - 

E 389232 297423 -23.59 389232 78225 -5.35 

F 52.17 57.46 10.14 52.17 68.26 30.85 

G 64320 64320 - 64320 78225 21.62 
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From the previous efficiency analysis results, it can be determined that many DMUs have established efficient 

operational plans. However, since this analysis performs a relative comparison of efficiency among groups, deriving a 

priority ranking of efficiency among the efficient groups holds additional significance. Therefore, SEM was conducted for 

the efficient DMUs. Table 8 and 9 show the SEM results. In the input-oriented SEM, DMU 3, 7, 9, and 10 showed 

relatively high potential for improvement. Taking DMU 3 as an example, the improvement levels for input variables A and 

E were significantly high at 136.29% and 125%, respectively. Similarly, the output variable G for DMU 9 and 10 showed 

high values of 127.97% and 145.17%, respectively. 

 
Table 8.  
PI results (Input-oriented, SEM). 

 3 4 7 8 9 10 AVR 

A 136.29 1.89 21.94 -8.4 -37.94 -63.3 8.41 

B 71.43 -0.95 20.09 -8.05 -35.91 -63.63 -2.84 

C 52.73 1.89 -5.81 8.62 12.8 -41.72 4.75 

D 7.14 1.89 21.94 8.62 12.8 -4.27 8.02 

E 125 1.89 -14.84 -50 12.8 33.33 18.03 

F 56.28 0 4.17 2.85 72.35 0 22.61 

G 11.22 19.32 0 46.01 127.97 145.17 58.28 

 

In the output-oriented SEM, DMU 1 showed relatively high improvement potential for input variables A and E at -

21.76% and -54.54%, respectively. Similarly, the output variables F and G for DMU 2 showed values of -20.82%. 

However, since negative directional improvement for G is not appropriate, it is not considered. 

 
Table 9.  

PI results (Output-oriented, SEM). 

 1 2 4 AVR 

A -21.76 -4.89 0 -8.88 

B -6.04 -0.84 -0.78 -2.55 

C 0 0 -5.3 -1.77 

D -6.54 -1.48 0 -2.67 

E -54.54 -3.51 0 -19.35 

F -3.32 -20.82 -15.19 -13.11 

G -10.02 -20.82 10.52 -6.77 

 

The comparative analysis of the original Green500 rankings and the efficiency rankings of the DMUs is shown in 

Table 10. DMU6 to DMU10 were positioned in lower ranks in the Green500 due to their high energy efficiency. However, 

the DEA efficiency results, which considered detailed performance factors, showed that they achieved the highest 

efficiency scores. On the other hand, DMU1, 2, 4, and 5, despite being ranked within the top 30 for high energy efficiency, 

were relatively lower in the DEA results. This highlights the discovery of new opportunities to improve energy efficiency 

and emphasizes the need to consider multiple performance indicators comprehensively rather than solely relying on energy 

consumption as a measure of efficiency. 

 
Table 10.  

Efficiency rank. 

DMU Name Green500 Rank 

1 JEDI 1 9 

2 JETI - JUPITER exascale transition instrument 6 7 

3 Henri 8 1 

4 Snellius phase 3 GPU 27 8 

5 CEA-HE 28 10 

6 MareNostrum 5 ACC 31 1 

7 Gefion 41 1 

8 Dhabi Supercomputer 49 1 

9 MeluXina - Accelerator module 60 1 

10 JUWELS booster module 66 1 

 

4. Conclusion 
Until now, it has been generally accepted that as the computational resources of supercomputers increase, energy 

efficiency tends to decrease slightly. However, significant limitations have persisted in identifying and explaining the 

specific factors influencing this trade-off, while the reliability of predictive models has remained limited due to 

insufficiently comprehensive analyses. In this study, we addressed these gaps by leveraging extensive performance data 

from supercomputers to identify seven critical factors influencing energy efficiency. By quantitatively deriving 

improvement measures, we have introduced a novel, data-driven approach to enhance the energy efficiency of 
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supercomputing systems. The most noteworthy contribution of this research lies in its comprehensive framework for 

addressing energy efficiency improvements at the component level. Unlike previous approaches, which primarily relied on 

singular strategies, this study highlights the interconnectedness of multiple factors influencing energy efficiency and their 

relative contributions. This systemic understanding not only allows for targeted interventions to improve specific 

components but also provides an integrated perspective that is essential for optimizing energy-efficient systems during the 

design phase of next-generation supercomputers. Despite these contributions, the study is not without its limitations. Due to 

the inherent characteristics of Data Envelopment Analysis (DEA), the findings are based on a relative efficiency evaluation 

among Decision-Making Units (DMUs), which inherently introduces a degree of relativity. The scope of the analysis was 

also limited to 10 supercomputers, selected based on specific criteria, which may restrict the generalizability of the results. 

Future research will address this limitation by expanding the scope to include data from the Green500 spanning at least five 

years, enabling a longitudinal analysis that captures trends and patterns over time. Moreover, this study did not account for 

external factors beyond the Green500 indicators that could significantly influence energy efficiency. For instance, elements 

requiring detailed power system analysis—such as heat loss from line heating, voltage drops during frequency regulation in 

power conversion systems, and cooling inefficiencies—were not controlled. These factors represent important avenues for 

future research to further refine the understanding of energy efficiency in supercomputers. 

Nonetheless, the significance of this study lies in its comprehensive attempt to analyze the factors affecting 

supercomputer performance and energy efficiency. By identifying key variables and quantifying their impact, this research 

provides a foundation for developing systematic strategies to mitigate the massive power consumption associated with 

supercomputing systems. In doing so, it contributes to the broader field of systems engineering by offering practical 

insights for optimizing the design and operation of increasingly sophisticated supercomputers. Looking forward, the results 

of this research are expected to have substantial implications for both academia and industry. By addressing the challenge 

of excessive power consumption, this study aligns with the global push toward sustainable computing and the development 

of eco-friendly artificial intelligence (AI) environments. We anticipate that these findings will not only help reduce the 

operational costs and environmental footprint of supercomputers but also accelerate technological progress in AI and high-

performance computing. Ultimately, this research lays the groundwork for the design of future supercomputing systems 

that are both highly efficient and environmentally sustainable, fostering innovation in an era where computational demands 

continue to rise exponentially. 
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