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Abstract 

The most frequent reason for mortality in many nations is cardiovascular disease. Past experience and current clinical testing 

of diagnosing patients with comparable symptoms are frequently used by doctors to make the diagnosis of cardiovascular 

disease. Heart disease patients need to be diagnosed as soon as possible, treated as soon as possible, and closely monitored. 

Numerous data mining techniques have already been employed to diagnose and forecast heart conditions in order to meet 

their objectives. To help doctors forecast and detect cardiovascular disease, deep learning and machine learning may provide 

a stronger basis for prediction and decision-making from healthcare data sectors around the world. The aim of the research 

is to propose an accurate algorithm for the prior prediction of heart disease using dual feature selection methodologies. The 

features are selected by utilizing feature selection methods such as LASSO and MR-MR. The early prediction of 

cardiovascular disease (CVD) is performed using an improved fuzzy-based TabNet deep learning model with a fuzzy 

foundation. The dataset is considered from the Kaggle Heart Disease Repository. The area under the curve (AUC) for the 

recursive operating characteristic curve is estimated for the proposed algorithm. Additionally, error measures like mean 

absolute error (MAE), mean squared error (MSE), and root mean squared error (RMSE) are estimated for the model's 

predictions, and the magnitude of MSE is 0.038, MAE is 0.180, and RMSE is 0.195, respectively. The best approach for 

classifying and predicting CVD is the integration of the enhanced TabNet algorithm and fuzzy foundation. The suggested 

approach lowers costs and improves medical care for predicting heart illness. The strength of the suggested model is relatively 

satisfying, and it reveals good accuracy in predicting indications of heart disease in a specific individual when compared with 

previously implemented classifiers. 
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1. Introduction 

It was estimated that cardiovascular diseases (CVDs) were responsible for the leading causes of deaths worldwide. In a 

recent study by the Global Burden of Disease (GBD) and the World Health Organization (WHO), death rates due to 

cardiovascular disease were increasing worldwide every year [1, 2]. WHO data indicated that CVD was predicted to impact 

over 23.6 million individuals by 2030. Consequently, the administration of suitable treatments and early and precise diagnosis 

leads to the reduction of deaths from cardiovascular illnesses. It is crucial for people at high risk of heart disease to gain 

access to these services [3]. A major challenge for health organizations is to provide patients with affordable, high-quality 

clinical treatment. Accurate patient diagnosis and suitable therapy identification are both necessary for delivering high-quality 

care while avoiding inaccurate diagnoses [4]. Early detection of CVD also reduces mortality and expenses. 

As a research curiosity for two decades, the use of Machine Learning (ML) has spawned a variety of commercial 

applications. It was a branch of artificial intelligence (AI) that fits models to data using statistical methods to recognize 

relevant patterns in huge, complicated, unstructured information [4]. It was a broad, interdisciplinary field with foundations 

in computer science, statistics, mathematics, cognitive analytics and among other fields [2]. To predict future data with high 

accuracy, historical data was used by Machine learning algorithms. Recently, ML techniques had a significant impact on the 

healthcare sector. By applying machine learning techniques to the healthcare sector, improvements such as accurate models 

of prediction, novel therapeutic strategies, Clinical Decision Support Systems (CDSS), drug discovery, and lowering medical 

care costs were possible [5, 6]. Recent developments in big data processing and the collection of everyday healthcare data 

had made it possible to apply machine learning (ML) to healthcare in practical applications. Several machine learning 

algorithms could be used on those datasets, which might be in an unstructured or structured format, to improve healthcare 

outcomes. Predictions of diseases were made using a variety of machine learning (ML) and Deep Learning techniques, 

including boosting algorithms, neural networks (ANN), K-nearest neighbor (KNN), decision trees (DT), linear regression, 

random forests (RF), and support vector machines (SVM) [7-9].  

 Deep learning has become a transformative technology in the medical field, especially when it identifies complicated 

conditions like cardiovascular disease (CVD). Deep learning automatically identifies significant patterns and correlations in 

massive datasets and provides medical diagnostics with supreme accuracy and efficiency. Utilizing the power of deep 

learning, a fuzzy-based TabNet model tailored for early and accurate CVD prediction was developed in this study [10]. Since 

deep learning models are excellent at identifying non-linear patterns and correlations in sizable datasets, they are well-suited 

for the complex nature of medical data. By adding domain-specific improvements like fuzzy logic, their diagnostic skills 

were further enhanced. This research sought to bridge the gap between machine learning's theoretical developments and their 

real-world applications in healthcare. The suggested method utilized deep learning, fuzzy logic, and improved feature 

selection, thus increasing diagnostic accuracy and making it possible to develop scalable and affordable early CVD detection 

tools. The aim of this research was to improve patient care and reduce the worldwide impact of cardiovascular illnesses [11]. 

This work presented a novel strategy that integrates fuzzy with enhanced TabNet deep learning model and dual optimal 

feature selection approaches for improving diagnostic accuracy for CVD prediction. Feature selection determined which 

features were the most pertinent and instructive, thus helping to improve model performance by lowering computational 

complexity and noise. In this, the model's predictive potential was greatly increased by deploying Maximum Relevance and 

Minimum Redundancy (MR-MR) and Least Absolute Shrinkage and Selection Operator (LASSO) approaches to guarantee 

robust feature selection. To handle ambiguity and imprecision in data, the proposed fuzzy-based TabNet model integrated a 

fuzzy logic framework, enabling more accurate decision-making in complex medical scenarios. In addition to improving 

prediction accuracy, this novel architecture also delivered higher specificity and lowers misclassification rates when 

compared to traditional classifiers [11] . Using data from the Kaggle Heart Disease Repository, the study had shown how 

well the model can classify and predict CVD. By addressing the limitations of existing classifiers and utilizing state-of-the-

art feature selection techniques, ultimately, this work contributed to improving patient outcomes and medical quality by 

developing reliable and cost-effective solutions for CVD diagnosis.  

The following are the main contributions and unique aspects of this work: 

• To provide a sparse dual attribute selection mechanism such as Minimum Redundancy Maximum Relevance and Least 

Absolute Shrinkage and Selection Operator by penalizing less relevant features and reducing the feature set to include 

only the most predictive variables, improving model interpretability and efficiency. 

• To deploy an enhanced deep learning model, the TabNet model, for classification. 

• To integrate a fuzzy decision-making process after the model prediction to enhance classification certainty, to apply 

the fuzzy rules for decision refinement, to calculate "fuzziness score" for each prediction. 

 

2. Literature Review 
Researchers have developed a model for cardiovascular disease prediction using a variety of machine learning 

techniques. Given its potential to lower morbidity, mortality, and healthcare expenses, early diagnosis of cardiovascular 

disease (CVD) has drawn significant interest in medical research. Conventional diagnostic methods frequently fall short of 

the required standards of accuracy and dependability as the complexity of CVD data rises. To overcome these constraints, 

scientists are now investigating sophisticated computational techniques like Machine Learning (ML) and Deep Learning 

(DL). 

The researchers El-Sofany, et al. [9] developed a mobile application that, given input symptoms, could rapidly diagnose 

heart illness using the best machine learning algorithm. Experimental findings showed that the XGBoost algorithm performed 

best on combined datasets and the SF-2 feature subset. They created a reasonable AI technique built on SHAP techniques to 
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comprehend the system's ultimate prediction-making process. Additionally, the study showed that the suggested system might 

be modified by employing a domain adaptation strategy. This work has significantly advanced the field of machine learning-

based heart disease prediction applications, offering novel insights and methods. 

Haseeb, et al. [12] used two techniques to identify cardiac disease early. Artificial neural networks, ensemble learning, 

and conventional Machine Learning were used in the first technique. The second strategy used fusing approach to machine 

and ensemble learning methods in order to improve model performance. 

The heart_statlog_cleveland_hungary_final dataset was divided using k-fold cross-validation, with k set to 10. 

Performance measures such as F1 score, sensitivity, accuracy, precision, and specificity were computed. The hybrid 

approach—which combines Bagging and Random Forest (RF)—was the best performer, with the highest average accuracy 

on the given data for the early detection of heart illness. 

Halah, et al. [13] suggested an approach that selects pertinent features by combining Genetic Algorithm (GA) with 

Recursive Feature Elimination Method (RFEM), thus improving the resilience of model. They also employed Under-

Sampling Clustering Oversampling Method (USCOM) strategies to resolve data imbalance, which enhanced predictive 

power of model. For classification task, additionally they used Multi-Layer Deep Convolutional Neural Network (MLDCNN) 

trained with adaptive elephant herd optimization method (AEHOM). Complete assessment revealed that the proposed 

Machine Learning-based Heart Disease Prediction Method (ML-HDPM) performed exceptionally well on important 

evaluation metrics. 

The authors Israa Nadheer [14] used three feed-forward Neural Networks to successfully categorize the clustered groups. 

Additionally, they proposed a unified method that makes use of XGBoost ensemble classification, enhancing the overall 

classification of FNN model outputs by exploiting boosted ensemble learning. The Cleveland dataset was split into 70% 

training and 30% testing sets to produce sovereign datasets. The XGBoost model produced satisfactory testing results when 

MLP outputs were incorporated. This study offered a dependable and effective methodology for healthcare applications by 

demonstrating the effectiveness of combining feature engineering, data processing, and ensemble learning techniques for 

strong cardiovascular disease diagnosis. 

The researchers Almazroi, et al. [15] proposed a method that used a Keras-based Deep Learning model, specifically a 

Dense Neural Network, to compute outcomes. The suggested model was tested using a range of hidden layer configurations 

in the dense neural network, from three to nine layers. With 100 neurons, each hidden layer utilized the ReLU activation 

function. Several datasets related to heart disease were used as benchmarks to conduct the study. Heart disease datasets were 

evaluated on both solo and ensemble models. The Dense Neural Network was also assessed with crucial metrics, including 

sensitivity, specificity, accuracy, and F-measure on all datasets. Because diverse attribute categories affect different datasets, 

various layer combinations perform differently. The findings of the suggested framework were examined through extensive 

experimentation. When compared with individual models and other ensemble approaches, the Deep Learning model proposed 

in this exploration [15] exhibited better accuracy, sensitivity, and specificity on all heart disease datasets.  

The researchers Aarti, et al. [16] introduced a cutting-edge Hybrid Convolutional Neural Network (HCNN) for heart 

disease prediction on extensive dataset from UCI Machine Learning Repository.  Attention mechanisms, leftover blocks, and 

convolutional layers were all included in the HCNN design. Even in the case of highly complicated patterns, these aided in 

extracting additional information from cardiovascular health data. By using these deep learning components, the HCNN 

displayed improved prediction abilities, achieving a fair F1 Score, strong categorization (AUC), and increased accuracy. The 

ability of the model to adapt to uncover intricate relationships within the data might help improve medical diagnosis. Its 

ability to quickly learn hierarchical patterns from unprocessed input made HCNN special. In order to effectively forecast 

cardiac disease, it was able to uncover hidden traits. To improve training efficiency for deep designs, the residue blocks 

prevented issues with fading gradients, while the convolutional layers assist the network in identifying local patterns. The 

network's remarkable capacity to distinguish between them was further enhanced by attention processes, which further 

concentrate it on key characteristics. This study made it possible for researchers, physicians, and data scientists to enhance 

cardiovascular health analytics by applying HCNN deep learning model.  A detailed analysis of the model's architecture and 

performance measures was provided, which was a significant step toward more accurate and effective cardiac disease 

prognosis. This made it possible for further study and application of sophisticated neural networks in the area of medical 

diagnostic prediction. 

The authors Bobburi, et al. [17] provided a systematic method that complies with the requirements for predicting patients' 

risk profiles using clinical data factors. The suggested appearance makes use of a Significant Neural Orchestrate to 

successfully handle the problems of underfitting and overfitting. This demonstrates outflanks on both planning and test data. 

Both Profound Neural Arrange (DNN) and Manufactured Neural Arrange (ANN) techniques were used to examine the 

model's efficacy, thus producing precise predictions on presence or absence of heart disease. 

 

3. Materials and Methods  
3.1. Data Collection 

The Description of Kaggle heart disease dataset is in Table1 below. In this scientific study, dataset used was an 

unbalanced classification dataset with 1025 instances taken from Kaggle Heart Disease dataset [9]. This dataset offered one 

target variable and thirteen unique attributes to fully characterize the people under examination. There were two classes in 

the heart data set: class 0 and class 1, where 0 specifies that a person does not have heart disease and 1 shows that they have 

heart disease. Table 1. above showed 1025 occurrences and 14 attributes (columns). As a result of the dataset, women seemed 

to have lower risk of heart disease than men. To properly treat heart problems, precise diagnosis was necessary. Consequently, 

conventional methods of diagnosis and prognosis are unable to produce reliable outcomes. 
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3.2. Data Preprocessing 

Preprocessing the data was obligatory to ensure that it could be used to train models. The data were first standardized 

using Standard Scaler and then tested and trained using train_test_split. This technique scaled each variable in dataset 𝑋 to 

have a mean of 0 and a standard deviation of 1. Standard Scaler was a Python utility in the sklearn.preprocessing package 

that is used to standardize (normalize) features by scaling them to unit variance and removing the mean. Using calculated 

statistics like standard deviation and mean, the data was transformed. The final result of data preprocessing is a new 𝑋 scaled 

dataset with a mean of 0 and a standard deviation of 1 for each feature. In addition, to prevent data leaks, the same scaler 

object was used to normalize the test and training data. The output of data preprocessing was shown in Table 2 below. 

  
Table 1. 

Description of features in Dataset. 

Dataset Name Heart Disease Dataset 

Instances 1025  

Classes 2- Class0- No Heart Disease in 

individual 

Class1- Occurrence of Heart Disease in an 

individual 

Total no of Features 14 

Input Features 13 

Output Features 1-Target variable 

Name of Feature Description Definition 

age Age Indicates the person's age. 

sex Sex Denotes a person's gender, with a "0" signifying a 

woman and a "1" signifying a man. 

cp Chest-pain type Specifies the type of chest pain felt, and it can be 

classified as asymptotic (4), non-anginal pain (3), 

atypical angina (2), or typical angina (1). 

trestbps Resting Blood Pressure refers to the person's resting blood pressure, which 

is expressed in millimeter-Hg. 

chol Serum  

Cholesterol 

Indicates volume of cholesterol in blood in 

milligrams per deciliter. 

fbs Fasting  

Blood Sugar 

This refers to comparing a person's fasting blood 

sugar level with cut-off of 120 mg/dL; value of "1" 

indicates true result (if fasting blood sugar is greater 

than 120 mg/dL) and value of "0" indicates false 

result. 

restecg Resting electrocardiogram Having resting electrocardiogram findings that are 

classified as normal (0), aberrant ST-T waves (1), 

or left ventricular hypertrophy (2) 

thalach Max Heart  

Rate Achieved 

Denoting highest ever attained heart rate  

exang Exercise-induced Angina Denotes whether exercise-induced angina is present 

(1) or not (0). 

oldpeak ST Depression Persuaded by 

Exercise Relative to Rest 

Showing a float or an integer. 

slope Peak Exercise  

ST Segment 

Indicating whether the peak exercise ST segment is 

flat (2), downsloping (3), or upsloping (1). 

ca Number of Major Vessels 

Colored by Fluoroscopy 

An integer or float that represents the number of 

major vessels (from 0 to 3) that have been colored 

by fluoroscopy. 

Thal Thalassemia Classified as normal (3), fixed defect (6), or 

reversible defect (7). 

target Diagnosis of Heart Disease Identifying whether a person has cardiac disease 

and classifying it as either present (1) or absent (0) 
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Table 2. 

Normalized features and their Mean and Standard Deviation. 

Standard Scaler Normalization 

S. No Feature Mean Standard Deviation 

1 age -0.01197917 1.02130084 

2 sex 0.0106728 0.99539542 

3 cp 0.02050516 1.00830729 

4 trestbps 0.00425462 0.99655698 

5 chol -0.03136069 0.93278486 

6 fbs -0.00598529 0.99407364 

7 restecg -0.01937919 0.99509783 

8 thalach 0.02266935 0.99972692 

9 exang 0.00138447 1.0004777 

10 oldpeak -0.02718553 0.97375129 

11 slope 0.02117024 0.98499445 

12 ca 0.01114114 1.01857959 

13 Thal 0.00890558 0.97272186 

 

3.3. System Design of Proposed Model 

To develop a comprehensive framework for accurately predicting cardiovascular disease by utilizing a multimodal 

strategy that combines feature selection, dimensionality reduction, and sophisticated deep learning approaches was the notion 

of this research. By leveraging advanced deep learning algorithms, employing ensemble deep learning, and creative feature 

selection techniques, the model efficiently identified intricate patterns present in patient data. This comprehensive approach 

provided medical professionals with a useful tool to improve patient treatment outcomes and ensured the fast and accurate 

diagnosis of heart disease. 

Additionally, data gathering, data pre-processing, and prediction were three crucial phases of the prediction system. To 

improve the predictive model, each of these phases was essential. A number of actions were carefully carried out during the 

rigorous pre-processing phase in order to maintain data integrity and model effectiveness. Furthermore, a traditional scalar 

method was utilized to recalculate the coefficients of every feature, bringing their mean and standard deviation to 0 and 1, 

respectively, thereby reducing the possibility of biases resulting from feature scale disparities and guaranteeing consistency 

in the influence of features. 

By distinguishing between two separate classes—class 0 and class 1, which stand for the absence and occurrence of 

cardiac illness, respectively—the database makes classification easier. In particular, 499 cases are classified as class 0, 

indicating that heart disease is not present, and 526 cases are classified as class 1, indicating that heart disease is present. 

 

 
Figure 1. 

Proposed Methodology for Cardiovascular Disease Prediction. 
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The Figure 1 for the dual-optimized feature selection fuzzy-based TabNet model was intended to show the methodical 

approach of the research methods, from data pre-processing to prediction. The workflow was visually represented by the 

diagram, which emphasized the combination of deep learning, fuzzy logic, and dual feature selection techniques. It offered a 

concise synopsis of the entire procedure, demonstrating how the creative fusion of different methods improved the diagnostic 

precision for the prognosis of cardiovascular illness. The main source of data was the Kaggle Heart Disease Repository. 

Cholesterol, blood pressure, age, and other clinical factors are the characteristics found in medical records. To make the 

dataset suitable for analysis, it was cleaned, normalized, and handled missing values. Two feature selection techniques were 

used: MR-MR (Maximum Relevance Minimum Redundancy), which picks features that are highly appropriate to the target 

and have little correlation with one another, and LASSO (Least Absolute Shrinkage and Selection Operator), which finds 

features with the strongest correlations to the target variable in order to reduce redundancy. For making predictions, this step 

produced the optimal subset of features. To handle uncertainty and ambiguity in medical data, a fuzzy inference system was 

incorporated. The translation of precise numerical inputs into fuzzy values was performed using linguistic terms (e.g., "low," 

"moderate," "high"), and the application of fuzzy rules was performed to enhance decision-making. The ambiguity and 

uncertainty in medical data were addressed by the incorporation of the fuzzy inference system. Fuzzy rules and linguistic 

phrases (such as "low," "moderate," and "high") were used in this module to convert exact numerical inputs into fuzzy values. 

TabNet was used as the fundamental deep learning architecture due to its attention-based feature learning and interpretability 

for organized medical data. The fuzzy logic module was incorporated into the TabNet framework to further increase accuracy 

and robustness. The fuzzy-based TabNet model was trained on an optimized dataset. Accuracy, recall, precision, F1-score, 

misclassification error, and specificity were the metrics used for evaluation. The ROC curve and confusion matrix were used 

for in-depth performance analysis. The model made predictions on patients' risk of CVD based on the processed input data. 

Clinicians were provided with practical advice for early intervention through interpretable outputs. 

 

3.4. Proposed Model for Early Prediction of CVD 

3.4.1. Feature Selection 

Feature selection was a key component of creating a successful heart disease prediction model. It was vital to select 

features that are most relevant from the dataset to enhance the model's performance and reduce computational complexity. It 

also improved generalization to new data, decreased training time, and increased model accuracy by choosing the most 

informative features. By using feature selection for heart disease prediction, clinical, demographic, or lifestyle factors most 

strongly associated with heart disease risk could be identified. This procedure assisted healthcare professionals in making 

data-driven decisions by improving the predictive performance of cardiac models and offering insight into the fundamental 

causes of cardiac disease. The three main feature selection techniques were filtering, wrapping, and embedding; each had its 

own advantages based on the dataset and model being used. 

 

3.4.2. LASSO 

A useful method for selecting features and regularizing predictive models was Least Absolute Shrinkage and Selection 

Operator. This approach was successful especially when there were many features in the dataset, including some that were 

irrelevant or had poor correlation with the target variable. Using Lasso, it was possible to uncover the most substantial risk 

factors for heart disease, including lifestyle factors and clinical biomarkers. When the coefficients of the feature values were 

small, LASSO performed very well. Features with high coefficient values would be included in chosen feature subsets. 

Superfluous features could be identified by LASSO [18, 19]. Additionally, the most frequently found characteristics would 

eventually be considered the most important ones by continually carrying out the previously mentioned procedure, increasing 

the feature's dependability [20]. 

The formulation for the LASSO optimization problem was: 

The minimization was 

||𝑦 −  𝑋𝛽||² +  𝜆||𝛽||₁                                    (1) 

In which, y represented the binary result (heart disease present or absent), β was a representation of the feature 

coefficients, X was the feature matrix and ||β||₁ was the L1 norm of β and λ was the regularization parameter. 

 

3.4.3. MR-MR 

The feature selection method known as Minimum Redundancy Maximum Relevance (MRMR) reduced redundancy 

among the selected characteristics when choosing which features were most relevant for predicting job outcomes. Because 

datasets often contain strongly related features and irrelevant factors, this was particularly useful when predicting heart 

illness. Selecting features that were most relevant to the target variable while eliminating features that provide redundant 

information was the aim of this approach [21]. MRMR used mutual information to quantify the volume of information a 

feature contributes to the target variable's prediction. For instance, although having similar data, systolic and diastolic blood 

pressure might both be linked to heart disease. In order to ensure that only one was selected, it favored features that 

complement one another. It performed well for datasets with a high number of features and relatively few samples, such as 

those seen in clinical or genomics research. By eliminating unnecessary and superfluous features, it improved generalization 

on unknown data and reduced overfitting. Since it could handle both continuous and categorical data, it could be used to 

predict heart disease across a range of datasets. Because MRMR balances relevance and redundancy, it was a powerful choice 

for developing accurate and therapeutically meaningful prediction models [22]. By making it easier to identify important risk 

factors, MRMR enabled early diagnosis, customized treatment plans, and a better understanding of how various clinical and 
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lifestyle factors affect the condition. The MRMR approach selected features using a scoring formula that balances relevance 

and redundancy:  

Maximum Relevance was given by 

Relmax  =  (1/|S|) ∑ I (fi;  H)                               (2) 

Where, S was the chosen feature set, fi was feature I, H was the result of heart disease and I was mutual information. 

Minimum Redundancy was given by 

Redmin  =  (1/|S|²) ∑∑ I(fi;  fj)                                               (3) 

where, fi, fj was feature pairs in S. 

When selecting features, the MRMR algorithm optimizes two criteria: minimizing redundancy among chosen features 

and maximizing relevance to the target variable [23]. The relevance term (Relmax) ensures that the chosen attributes are 

relevant to the target. The redundancy term (Redmin) penalizes features that are highly correlated with previously selected 

features. 

 

3.4.4. Prediction of CVD 

A novel hybrid approach to cardiovascular disease prediction was presented in the proposed work, which blends 

improved tabular neural networks, or TabNets, with fuzzy logic. The goal was to enhance the accuracy and interpretability 

of prediction models for cardiovascular illness by combining fuzzy logic with an improved TabNet. To handle tabular data, 

a deep learning network called TabNet was enhanced using optimized feature selection and attention techniques. For medical 

datasets, these procedures were crucial. Fuzzy logic improved this by identifying the ambiguity and uncertainty found in 

clinical data, such as test results, patient histories, and symptoms. Together, they provided a robust framework for handling 

ambiguous data and spotting important trends, which improved the prediction of CVD risk [24]. 

The combination of fuzzy logic and augmented TabNet is used to forecast cardiovascular illness because it combines 

advanced feature representation with interpretable decision-making under ambiguity. In order to minimize noise and 

maximize the selection of clinically relevant variables, the enhanced attention approach in Enhanced TabNet employs sparse 

feature masking. At every decision stage, the feature importance is dynamically changed. The fuzzy logic system is 

mathematically integrated with this, using rule-based inference and membership functions to capture linguistic uncertainty 

and explain imprecise medical data. A new weighted aggregation approach is utilized to fuse both models. Through an 

adjustable parameter, 𝛼, the TabNet-predicted risk score—derived from high-dimensional latent space representations—is 

coupled with the interpretable risk output of the fuzzy system. Prediction accuracy is increased, and transparency is 

maintained by integrating complex machine learning models with the interpretability required for important healthcare 

decisions. This combination addresses feature complexity and data ambiguity at the same time, marking a significant 

advancement in predictive modeling [25]. 

The operation of the dual feature selection and fuzzy based modified TabNet algorithm1 for cardiovascular disease 

prediction is described below. 

Algorithm 1 for Fuzzy based modified TabNet for Cardiovascular disease prediction. 

Input: Dataset D = {X, y}, fuzzy membership functions F, fuzzy rules R 

Output: Predicted cardiovascular disease stages 

1. Normalize features X. Xscaled=X−μ/σ. Split dataset into training (D_train) and testing (D_test). 

2. Apply LASSO to select features X_lasso. min∥y−Xβ∥22+λ∥β∥1 and Use MRMR to refine features to X_selected. 

Score(xi)=I(xi;y)−1/∣S∣ ∑xj∈SI(xi;xj) 

3. For each feature x_i in X_selected: Define fuzzy sets (Low, Medium, High) using membership functions. 

4. Generate Fuzzy Rules: Use domain knowledge to define rules R. 

5.  For each sample x in D_train: Compute membership values for each fuzzy set.  

Evaluate fuzzy rules R to calculate P_fuzzy(y|x). 

6. Concatenate original features X_selected with fuzzy outputs P_fuzzy(y|x). Train TabNet model M with enhanced 

inputs and target labels y_train. 

Xenhanced = [Xselected, Pfuzzy(y∣x)] 

7. For each sample x in D_test: Compute fuzzy outputs P_fuzzy(y|x). Pass enhanced inputs (X_selected ∪ P_fuzzy(y|x)) 

through M. 

Output P_final(y|x). 

8. Calculate accuracy, precision, F1-score, recall, MAE, MSE and Visualize feature importance and fuzzy contributions. 

 

3.4.5. Sparse Feature Masking with Controlled Attention 

TabNet selectively attends to the most pertinent features for every decision step using a learnable feature mask. In 

mathematics, this is represented as: 

Mk = σ(Wk
Tx + bk)                                               (4) 

Where Mk denotes step k's sparse mask vector, which establishes the significance of the features; Wk and bk are the 

weights and biases that can be trained for each step k. The vector x represents the input features, and Σ represents the Sigmoid 

activation to enforce sparsity. The innovative aspect is that feature importance is dynamically re-evaluated at each decision 

stage, which is crucial for medical data because patient-specific circumstances can affect feature relevance [26]. 

 

3.4.6. Sequential Aggregation of Latent Representations 

Every decision step uses masked characteristics to alter the input 𝑥: 
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𝑧𝑘 = 𝑀𝑘 ⋅ 𝑓𝑘(𝑥)                                                                       (5) 

Where fk(x) denotes feature transformation function (e.g., layer of a neural network). 

The following latent representations are aggregated in a sequential manner:           

RiskTabNet = g(z1, z2, … , zK)                                               (6) 

Where g refers to an Aggregation function, usually an aggregate of weights. This combination of sequential attention 

and sparsity is innovative since it enables TabNet to adaptively focus on particular medical features without overfitting [27]. 

TabNet is enhanced with fuzzy logic, which adds a layer of clinical rule-based interpretable decision-making. Membership 

functions are used to map clinical variables (such as age and cholesterol) to fuzzy sets: 

μA(x) =
1

1+e−a(x−c)                                          (7) 

Where μA(x) represents a membership value that indicates how much x belongs to the fuzzy set A (for example, "high 

cholesterol"). A variable regulates how steep the membership function is, and c denotes the fuzzy set's center. 

 

3.4.7. Rule Activation and Aggregation 

Using fuzzy inference rules, these membership values are combined: 

Rj = min (μA1(x1), μA2(x2), … )                                  (8) 

Where Rj represents the rule's activation level. Rule For instance: "IF age is high AND cholesterol is high, THEN CVD 

risk is high." All activated rules are weighted and aggregated to determine the output fuzzy risk: 

Rj = min (μA1(x1), μA2(x2), … )                                               (9) 

Where wj is Rule j's importance weight. 

 

3.4.8. Integration of Enhanced TabNet and Fuzzy Logic 

The result of the integration is a hybrid system that strikes a balance between fuzzy logic's interpretability and TabNet's 

accuracy. 

 

3.4.8.1. Fusion of Weighted Risk Scores 

The final risk score is a weighted combination of the two elements 

Final Risk Score = α ⋅ RiskTabNet + (1 − α) ⋅ RiskFuzzy                     (10) 

Where α denotes a weighting parameter that is optimized during training to strike a balance between interpretability and 

prediction performance. This mathematical foundation ensures that the improved TabNet recognizes intricate patterns in 

clinical data, and fuzzy logic provides it with interpretability and resilience. This makes it especially appropriate for 

predicting cardiovascular illness in actual clinical situations [28].  

 

4. Results and Discussion  
Feature importance is the act of determining the relevance of each input feature in the decision-making process by 

computing the score of each feature in a machine learning model. Higher feature scores have a significant influence on the 

model's capability to predict the target variable. The majority of TabNet implementations, like the one included in the pytorch-

TabNet library, include tools for determining feature importance. The selection of medical characteristics that could increase 

the prediction accuracy of heart disease was the main driving force behind this endeavor. The benefits of feature selection 

include improved data quality, reduced computing time for prediction models, enhanced predictive performance, and an 

effective data collection procedure [29]. The tabular representation of Feature Importance scores based on the TabNet model 

is shown in Table 3 below. The most crucial characteristics for predicting Cardiovascular Disease are "thalach," "oldpeak," 

"restecg," "chol," and "fbs," possessing appropriate scores related to the outcome. The TabNet model emphasizes the 

importance of concentrating on thalach, oldpeak, and restecg characteristics for improved diagnostic accuracy, as these are 

the most significant predictors of CVD. Critical characteristics for reliable predictions are identified by this feature 

importance analysis, which aids in the dual feature selection procedure. 

 
Table 3. 

Feature importance scores for each feature based on TabNet. 

S. No Feature Feature Importance Score 

1 age 0.0461 

2 sex 0.0442 

3 cp 0.0546 

4 trestbps 0.0584 

5 chol 0.0921 

6 fbs 0.0835 

7 restecg 0.1024 

8 thalach 0.1868 

9 Exang  0.0535 

10 oldpeak 0.1454 

11 slope 0.0508 

12 ca 0.0196 

13 Thal  0.0620 
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The following Figure 2. shows the different features in Kaggle heart dataset and their feature importance scores related 

with target variable. The feature “thalach” has high feature importance score of 0.1868, the feature “oldpeak” has next high 

feature importance score of 0.1454, the feature “restecg” has high feature importance score of 0.1024 and features “chol” and 

“fbs” has high feature importance score of 0.0921 and 0.0835 respectively. 

 

 
Figure 2. 

Feature Importance from TabNet. 

 

The following Figure 3 is the graphical analysis representing the number of individuals affected by heart disease and its 

percentage in different age groups and based on gender. This analysis examines how heart disease is distributed among 

various age and gender categories using data. In particular, the following are examined: In which age groups does heart 

disease most commonly occur? In each age range, are males or females more likely to be impacted? How many people in 

each demographic group have heart disease? Age is divided into groups (20–29, 30–39, etc.) using pd.cut() to create the 

age_group column. The percentage of people afflicted by the disease is determined for each age group and gender. The 

stacked bar chart below shows the number of males and females with the disease (1) in each age group. The light blue color 

in the stacked bar chart represents the count of females affected by heart disease in each age group, and the salmon color 

represents the count of males affected by heart disease in each age group [30]. 

 

 
Figure 3. 

Counts and Percentages of Disease Presence by Age Group and Gender. 
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Table 4. 

Gender-wise count affected by heart disease in each age group. 

 Disease-affected count based on gender Disease affected Percentage 

Age Group Male Female Male Female 

20-29 39 37 46.98 46.83 

30-39    45 28 54.87 41.79 

40-49     47 47 53.40 49.47 

50-59   47 52 52.80 54.73 

60-69 46 35 52.27 49.29 

70-79 51 40 50.49 45.97 

 

Table 4 represents the analysis that provides a thorough viewpoint on this important health issue by using data-driven 

insights to display and quantify disease prevalence. This analysis determines whether males or females are more affected in 

particular age groups and identifies the age group with the largest number of sickness cases. The probability of contracting 

the disease for each gender within each age range is displayed in the percentage column. The above table reveals that females 

in the age group between 50-59 are highly affected by heart disease, with the percentage of affected females being 54.73%. 

Males in the age groups between 30-39 and 40-49 are also highly affected by heart disease, with the percentage of affected 

males in the 30-39 age group being 54.87% and the percentage of affected males in the 40-49 age group being 53.40%. 

 

 
Figure 4. 

Distribution of chest pain types in disease-affected individuals. 

 

 The above Figure 4 exposes the graph that shows the distribution of Chest Pain Types in disease-affected individuals. 

A stacked bar plot is created, showing the distribution of disease presence or absence for each chest pain type. Disease 

presence is shown in salmon color and absence in light blue color. In the above stacked bar plot, the x-axis represents the 

chest pain forms (0, 1, 2, 3) and the y-axis shows the number of people. Each form of chest pain is represented by stacked 

bars indicating the number of patients with and without the disease [31]. The dataset is divided into groups based on disease 

state and chest pain type, and then size () is used to determine how many people are in each group.  

 
Table 5. 

Count of individuals with Chest pain types. 

Chest Pain Type/ Target Target  

No Heart Disease (0) Heart Disease (1) Total Percentage Affected 

0 116 143 259 55.21% 

1 143 127 270 47.03% 

2 140 132 272 48.52% 

3 112 112 224 50% 

 

Table 5 above shows the distribution of chest pain types in individuals and whether they have the disease or not. Chest 

pain type 0 represents Typical Angina, chest pain type 1 represents Atypical Angina, chest pain type 2 represents Non-

Anginal Pain, and chest pain type 3 represents Asymptomatic. It is estimated that 55.21% of individuals with heart disease 
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have chest pain type Typical Angina. There are 47.03% of individuals suffering from heart disease who experience Atypical 

Angina. There is an estimated 48.52% of individuals suffering from heart disease who have chest pain of the Non-Anginal 

type. The percentage of individuals affected by heart disease with chest pain type Asymptomatic is 50%. Based on the 

analysis, Typical Angina has the highest percentage of heart disease patients, while Non-Anginal Pain is more common in 

heart disease patients. 

 

 
Figure 5. 

Distribution of disease presence across genders. 

 

It is crucial to determine the existence of cardiac disease in men and women to comprehend these differences and 

adjusting treatment and prevention plans appropriately. The study was conducted to observe number of men and women with 

heart disease, as shown in Figure 4. Through examining the distribution of disease presence across genders, this study seeks 

to determine which gender is more likely to suffer from heart disease, comprehend the percentage of both men and women 

affected, and offer insights for directing gender-specific health interventions. This study highlights the gender-based burden 

of heart disease through data summaries and visualizations, which will be helpful to researchers and medical practitioners 

who are trying to reduce gender disparities in cardiovascular health outcomes. 

 
Table 6. 

Percentage of disease affected males and females. 

Sex Disease Presence /Absence Percentage Affected 

No Heart Disease (0) Heart Disease (1)  

Female 255 239 48.380 

Male 256 279 51.789 

 

The number of males and females with heart disease is analyzed in Table 6. The objective of the analysis is to determine 

the percentage of each gender affected by heart disease by comparing the prevalence of the ailment in men and women. 

Finding disparities in the prevalence of heart disease between the sexes, calculating the count of men and women with 

diagnoses, and providing data-driven insights for developing gender-specific prevention and treatment strategies are the 

primary objectives. With a 51.789% impacted rate, heart disease is most common among men. With an impacted percentage 

of 48.380%, heart disease affects women less frequently than it does men. 

 

4.1. Performance Metrics 

Assessing the efficacy of predictive models is crucial when using machine learning and deep learning to predict 

cardiovascular disease (CVD). Accuracy of model's classification and outcome prediction is evaluated using performance 

metrics, which are measurable benchmarks. These measures ensure model's reliability in real-world scenarios exposing 
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model's strengths and weaknesses. Accuracy, recall, precision and F1-score are the main performance metrics used in this 

study. 

For early intervention and better CVD treatment, it is crucial to identify individuals who are at risk using accurate 

prediction models. The prediction performance of various machine learning methods for CVD is evaluated in this study. 

Models like CNN, TabNet, Random Forest, XGBoost, and logistic regression are evaluated using key performance indicators, 

including accuracy, precision, F1-score, recall, and AUC-ROC. Based on the dataset and its properties, the goal is to identify 

the model that produces the most accurate predictions. In order to determine which model is optimal for CVD prediction 

tasks, this study will evaluate the benefits and shortcomings of each model and clarify how machine learning models might 

enhance clinical decision-making by analyzing these metrics and displaying the model outputs. 

The prediction of disease was examined with several machine learning models for the available input Kaggle heart 

dataset. The forecast was made using five distinct machine learning models. Three of the five models had an accuracy of 

90% or above. Figure 6a illustrates that the TabNet model achieves the highest accuracy of 99.61% among all the models. 

The accuracy is high because TabNet employs a sequential attention mechanism, which aids in the model's concentration on 

the most relevant characteristics for outcome prediction, and it also learns feature representations directly from raw tabular 

data without the need for considerable pre-processing or feature engineering. With an accuracy of 78.98%, the Logistic 

Regression model was the least accurate of the models that were examined. The accuracy rate for the Convolutional Neural 

Network was 86.77%. XGBoost demonstrated a 96.83% accuracy rate. Using Random Forest, the accuracy was 95.83%. 

 
Figure 6a. 

Models' performance analysis using accuracy. 

 

 
Figure 6b. 

Models' performance analysis using precision. 

 

The Figure 6b depicts the model performance analysis using the performance metric precision. The TabNet model 

possesses the highest precision of 99%. The high precision of predicting cardiovascular disease using TabNet suggests that 
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the model is good at reducing false positives, or correctly identifying those who actually have the condition. In order to 

prevent the model from being misled by irrelevant or weakly correlated features, TabNet's sequential attention mechanism 

concentrates on the most pertinent features for prediction. This effectively separates people with true cardiovascular disease 

symptoms, lowering the possibility of false positives. The precision of XGBoost, Random Forest, and CNN are 96.3%, 

95.1%, and 85.1% respectively. The Logistic Regression model possesses the least precision of 79.8%. 

  

 

 
Figure 6c. 

Models' performance analysis using recall. 
 

 
Figure 6d. 

Models' performance analysis using F1-score. 

 

The above Figure 6c expresses the model performance analysis using Recall performance metric. The traditional 

Machine Learning models frequently have trouble striking a balance between recall and precision, particularly when dealing 

with unbalanced datasets or substantial non-linear feature interactions. The recall measure of TabNet for cardiovascular 

disease prediction was higher than other models which was 99.2%, because even in situations when other models could 

overlook them, the model picks up on minute patterns and interactions in the data that are essential for identifying actual 

occurrences of cardiovascular disease. Other models such as XGBoost, Random Forest, CNN possessed recall of 95.2%, 

94.4%, 89.6% for predicting the disease. The Logistic Regression had least recall measure of 85.6% than other models. 

The above Figure 6d expresses the model performance analysis using F1score performance metric. The F1score of 

TabNet model was high which was 99.5%. This indicated that the model was successful in detecting the majority of positive 
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cases and reliable in distinguishing real positives. The F1score of remaining models XGBoost, Random Forest, CNN and 

Logistic Regression were 96.3%, 95.1%, 85.1% and 79.8% respectively. 

 
Table 7. 

Model Performance Analysis for Cardiovascular Disease Prediction. 

Performance Metrics Accuracy Precision Recall F1-score 

Model 

CNN 86.77% 85.1% 89.6% 85.1% 

XGBoost 96.83% 96.3% 95.2% 96.3% 

RF 95.83% 95.1% 94.4% 95.1% 

LR 78.98% 79.8% 85.6% 79.8% 

TabNet 99.61% 99% 99.2% 99.5% 

 

The above Table 7 summarizes the performance analysis of various models such as XGBoost, CNN, Random Forest, 

Logistic Regression, and TabNet for cardiovascular disease prediction using various performance metrics like accuracy, 

recall, precision, and F1-score. With an outstanding accuracy of 99.61% and an F1-score of 99.5%, TabNet attains the top 

results across all measures. In this investigation, this model is the most successful at predicting CVD since it has nearly 

flawless prediction abilities. XGBoost is a dependable option for prediction tasks needing high precision since it delivers 

strong performance with 96.83% accuracy and 96.3% precision. Random Forest (RF) performs well, with measures such as 

an accuracy of 95.83% and an F1-score of 95.1% that are somewhat lower than XGBoost. CNN shows that it can accurately 

identify affirmative cases, as seen by its respectable recall (89.6%). However, in terms of overall performance, it falls short 

of RF, XGBoost, and TabNet. With an accuracy of 78.98% and precision of 79.8%, Logistic Regression (LR) performs the 

least out of all the models, underscoring its shortcomings in challenging predicting tasks. 

 

 

 
Figure 7. 

ROC curve for CVD prediction. 

 

The ROC curve in Figure 7 demonstrates how a binary classification model performs in making predictions. The 

performance of a random classifier is shown by the dashed diagonal line. In the event that the curve falls along this line, the 

model's predictions are as accurate as a wild guess. The performance of the model at various threshold levels is shown by the 

blue line. Starting at (0, 0), the curve should ideally move toward the top-left corner (high TPR, low FPR), which denotes 

improved model performance. Given that the ROC curve is in the upper-left corner, the model is performing well and has 

good discrimination between the two classes. Near-perfect performance is indicated by the ROC curve, which shows that the 

AUC value is very near to 1 (probably >0.99). The curve illustrates how well the model works at various thresholds for 

decisions. For example, FPR may rise if a threshold favoring high TPR is established. A criterion that favors low FPR could 

make TPR lower. This ROC curve illustrates how well the model performs in differentiating between the two classes (e.g., 

disease presence vs. absence). Models that obtain virtually flawless metrics, like TabNet, are consistent with this level of 

performance. 
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Figure 8. 

Error metrics for Cardiovascular disease Prediction. 

 

The bar graph in Figure 8 shows graphically the MSE, MAE, and RMSE error metrics computed for the model's 

predictions in comparison to actual values in this bar graph. The three errors metrics are represented on the X-axis (Error 

Measure): RMSE (Root Mean Squared Error), MAE (Mean Absolute Error), and MSE (Mean Squared Error). The magnitude 

of the determined error values for each measure is displayed on the Y-axis (Error Value). The size of each error measure is 

shown by the heights of the bars: RMSE: 0.195, MAE: 0.180, and MSE: 0.038. To differentiate each error measure, a separate 

hue is used, with red denoting RMSE, green for MAE, and blue for MSE. Since square root scaling is not used, MSE, which 

measures squared differences, has the smallest value and is usually lower than RMSE. Since MAE assesses the average 

absolute difference between predictions and actual data, it is larger than MSE. Because it amplifies greater deviations by 

taking the square root of squared errors, RMSE has the highest value of the three. The model's error measures are clearly 

compared in the graph. The model appears to function well with low prediction errors, as indicated by the low values for all 

metrics. However, slightly larger variances are shown by MAE and RMSE, highlighting the need to reduce outliers for future 

progress. 

 

5. Conclusion  
According to findings, the most accurate and successful method for early cardiovascular disease (CVD) prediction is the 

enhanced fuzzy-based TabNet deep learning model. The application of LASSO and MR-MR feature selection approaches 

guarantees that the most pertinent characteristics are chosen for the prediction model, improving its accuracy and resilience. 

These are important findings that support this conclusion. With a high level of accuracy of 99.61% and dependability, the 

enhanced TabNet algorithm demonstrates remarkable performance. The suggested model shows better accuracy and 

prediction ability for early CVD detection when compared to conventional classifiers like CNN, XGBoost, and Random 

Forest. By facilitating early intervention, the model's accuracy in predicting the signs of heart disease lowers healthcare 

expenditures and enhances the standard of medical care. Its application of a fuzzy basis improves judgment in situations that 

are unclear or ambiguous, which is crucial for medical diagnoses. Because of its reliable performance and affordability, the 

enhanced fuzzy-based TabNet model is recommended for clinical applications in early CVD prediction. Adoption of it may 

result in reduced morbidity linked to late-stage cardiovascular illnesses, improved patient outcomes, and more efficient use 

of available resources. The model's performance is evaluated using metrics and error measures, which offers a thorough 

understanding of how well it predicts cardiovascular illness. 
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