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Abstract 

 Non-Intrusive Load Monitoring (NILM) is a technique used to distinguish the energy consumption of individual electrical 

devices from aggregated energy consumption data without requiring additional sensors on each device. This technology 

plays a crucial role in efficient energy management, reducing energy costs, and supporting the development of smart 

buildings. This research focuses on developing a hybrid deep learning network to enhance NILM efficiency by combining 

convolutional neural networks with long short-term memory networks. This combination enables the analysis of complex 

electrical power signals, improving the accuracy of device classification, reducing prediction errors, and enhancing learning 

efficiency from diverse data. The proposed method is trained using electrical appliance interaction data in three 

configurations: 2-appliance, 3-appliance, and 4-appliance interactions. Experimental results demonstrate training accuracies 

of 98.59%, 98.59%, and 93.09%, respectively, while the highest testing accuracies are 98.59%, 95.61%, and 92.94%. These 

results highlight the potential for further advancements in NILM technology, enabling more efficient energy monitoring 

systems and promoting sustainable energy use in the future. 
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1. Introduction 

In the present, household electricity consumption has become a significant area of study, utilizing data on the energy 

usage of various electrical appliances to analyze and assist users in optimizing their energy consumption behavior. This, in 
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turn, impacts costs and promotes economic sustainability. However, traditional electricity usage monitoring relies on 

installing sensors alongside devices capable of learning operational patterns, known as Intrusive Load Monitoring (ILM) 

[1]. This method has several limitations, such as high costs, complex installation processes, and maintenance difficulties. 

Consequently, an alternative approach, Non-Intrusive Load Monitoring (NILM), has been developed to address these 

challenges [2, 3]. 

NILM relies on analyzing the total energy consumption data of all appliances, including parameters such as current, 

voltage, frequency, and others. This approach is combined with signal processing techniques or deep learning (DL) 

Machlev, et al. [4] to distinguish different load operation patterns. The development of deep learning techniques in recent 

years has significantly improved the accuracy and efficiency of load monitoring Yang, et al. [5] particularly through 

convolutional neural networks (CNNs), which effectively learn the characteristic features of electrical appliances. For Yin 

and Ma [6] proposed an NILM model utilizing IVCRACNN, which integrates MobileNet as the backbone to reduce 

computational complexity. This model employs depth-wise separable convolution to separate processing across channels 

and minimize the number of parameters. The system was tested using voltage-current waveforms, transformed through a 

transferring method, and trained for NILM. Similarly, Yang, et al. [7] developed an NILM model using Temporal 

Convolutional Networks (TCN) and dilated causal convolution to address visibility limitations and enhance the model's 

ability to learn sequential information. The model also incorporates Residual connections to mitigate the gradient vanishing 

problem, working alongside activation functions to preserve electrical load characteristics more effectively. In Ciancetta, et 

al. [8] proposed a CNN-based NILM model designed to detect and classify electrical loads simultaneously without 

requiring prior event segmentation, thereby reducing computational time. This approach was tested using the Short-Time 

Fourier Transform (STFT) of electrical currents, represented as a 101×26 matrix (frequency×time). The transformed data 

was processed through a convolutional layer with filters of sizes 32, 64, and 32, utilizing ReLU activation and max pooling 

to downsize features and decrease computational costs. Other studies, such as Zhang, et al. [9] and Su, et al. [10] have also 

explored NILM advancements. However, using a single deep neural network still has limitations in terms of accuracy, 

particularly due to the complexity of capturing the operational characteristics of highly intricate electrical devices. This 

challenge often results in load recognition errors Fang, et al. [11] and overfitting issues during training, especially when 

recognizing similar electrical appliances [12]. 

Based on the aforementioned research approaches, this study focuses on developing a Hybrid Deep Learning (Hybrid 

DL) network that integrates the advantages of Convolutional Neural Networks (CNNs) and Long Short-Term Memory 

(LSTM) to enhance the efficiency of NILM. The proposed hybrid model improves accuracy in distinguishing complex 

loads and reduces misclassification errors in electrical appliance identification. Additionally, the model incorporates 

Residual blocks and AL to enhance training efficiency and improve result consistency in learning. The proposed model is 

evaluated using three different scenarios of appliance operation: the simultaneous operation of 2- appliances, 3- appliances, 

and 4-appliances. The operational data is processed through a Kurtogram to highlight essential features of electrical signals 

more distinctly. This research provides a significant contribution to advancing NILM technology, improving its accuracy 

and effectiveness. Moreover, it supports the development of sustainable energy consumption analysis for the future. 

 

2. Research Theory 
This section compiles the theories used in the experiment, including details on their operation and application in the 

experiment, as follows. 

 

2.1. Convolutional Neural Network   

A CNN Prommakhot and Srinonchat [13] is a deep learning architecture designed for analyzing and learning features 

from images using convolutional layers. These layers extract essential features through filters, followed by the ReLU 

activation function to introduce non-linearity, and max-pooling layers to reduce data dimensions while preserving key 

features. The processed data is then transformed into a vector through a fully connected layer, where Softmax is used for 

classification.   

The learning process of CNN consists of forward propagation, loss calculation, and backpropagation, which adjust 

parameters for optimal performance. This study integrates CNN due to its capability to extract features from electrical 

device operations. The details of its functionality are as follows:   

 

𝑂(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ∙ 𝐾(𝑚, 𝑛)
𝑓−1

𝑛=0

𝑓−1

𝑚=0
 

(1) 

 

Let I be an image of size MxN and K be a filter of size fxf used for feature extraction. The output O(i,j) at position (i, j) 

on the feature map is obtained by sliding the filter K(m,n) across the image I(i,j). This process involves element-wise 

multiplication between the filter values and the corresponding pixel values in the image. The results are then summed to 

produce the feature map at position (i,j). This step is crucial for extracting distinctive features from the image. 

 

2.2. Long Short-Term Memory Network   

The Long Short-Term Memory (LSTM) network Mao, et al. [14] is designed to address the vanishing gradient problem 

in learning sequential data with long dependencies. LSTM utilizes a memory cell structure, which consists of a Forget Gate 
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(Equation 2), an Input Gate (Equations 3 and 4), an Update Cell State (Equation 5), and an Output Gate (Equations 6 and 

7). These components work together to regulate the flow of information.  

The Forget Gate determines whether past information should be discarded or retained.   

The Input Gate decides whether new information should be added to the memory cell.   

The Output Gate determines which part of the information in the memory cell should be output.   

This study incorporates LSTM due to its capability to emphasize essential features in long-sequence data.  The 

detailed operation is as follows: 

 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (4) 

𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ �̃�𝑡 (5) 

𝑂𝑡 = 𝜎(𝑊𝑂 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑂) (6) 

ℎ𝑡 = 𝑂𝑡tanh(𝐶𝑡) (7) 

 

When 𝑓𝑡 is the output of the Forget Gate, and 𝑊𝑓 and bf represent the weight and bias of the Forget Gate, respectively, 

ℎ𝑡−1 denotes the hidden state, and 𝑥𝑡 is the new input data. Meanwhile, 𝑖𝑡 is the output of the Input Gate, and �̃�𝑡 represents 

the new cell state, which is processed through the tanh activation function to aggregate the updated memory values.   

The cell state is 𝐶𝑡 influenced by both the previous memory state 𝐶𝑡−1and the newly added information. This updated 

memory is then passed to the Output Gate, which produces an output value𝑂𝑡, regulating the flow of information from the 

memory cell. The hidden state ℎ𝑡 represents the output of the LSTM, which is then propagated to the next layer of the 

network. 

 

2.3. Residual Blocks 

Residual Blocks (RB) Zhang, et al. [15] were developed by Microsoft research to mitigate the vanishing gradient 

problem in deep learning models, enabling neural networks to learn deep functions more effectively. This study integrates 

RB due to their capability to preserve important information and prevent its loss. The detailed operation is as follows:  

 

𝑦 = 𝐹(𝑥) + 𝑥 (8) 

 

When 𝑥 is the input, 𝐹(𝑥) is the learning function, and 𝑦 is the output of the RB, the result is a patch from the previous 

layer, which is then added back into the computation for the next layer. 

 

2.4. Attention Layers   

Attention layers (AL) Tan and Ding [16] are designed to help the model focus on important information rather than 

treating all data equally. AL relies on self-attention to compute the relationships between data positions, as shown in 

Equation 9. This mechanism enables the model to learn essential features more effectively. The output is represented as 

data that reflects the learned attention weights. This study integrates AL into the development process due to its ability to 

preserve the relationships and significance of the data. The detailed working mechanism is as follows:   

Attention(AL) = Softmax(
QKT

√dx
)V 

(9) 

 

When Q, K, and V represent the query, key, and value matrices, respectively, and dx is the dimension of the key, the 

output is a matrix that represents the data weighted according to the importance learned by the model. 

 

3. Methodology  
This research proposes the development of a hybrid model for NILM. The work is divided into three parts: Part 1, the 

NILM dataset is a data that has been transformed into a Kurtogram to highlight the performance characteristics of electrical 

appliances. Part 2, the integration of a CNN network with the ability to extract deep features of energy signals and an 

LSTM to analyze the time sequence of energy consumption. Such fusion enables the network to effectively learn the 

energy patterns and behaviors of electrical appliances, and also helps the model to reduce the problem of incorrect load 

separation. In addition, the RB layer and AL are fused to emphasize the features of the data. Finally, the precision, recall, 

accuracy, Mean Absolute Error (MAE), and confusion matrix are evaluated for the proposed method and compared with 

previous methods. 

 

3.1. Dataset  

This study uses the indoor electrical appliance operation dataset, which is developed for NILM Yaemprayoon and 

Srinonchat [17]. The dataset records real-time energy values and details of five electrical appliances: a 7,033-watt air 

conditioner (device 1), a 3,516-watt air conditioner (2-appliance), a 28-watt light bulb (3-appliance), an 800-watt 

microwave oven (4-appliance), and a 150-watt water pump (5-appliance). The operation data of the appliances are recorded 

using a programmable logic device with sampling accuracy. The recording characteristics of the equipment are: 1 device 

records 1000 times (ON/OFF). This study studies three types of data:  
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1) 2-appliance e combination: 12, 15, 25, 34 and 45.  

2) 3-appliance combination: 124, 135, 145, 235 and 345.  

3) 4-appliance combination: 1234, 1235, 1245, 1345 and 2345. 

The combination of these three characteristics is transformed into a Kurtogram Antoni [18] to change the 

characteristics of the data as shown in Figure 1. The image data is collected and grouped for training 80% and testing 20%. 

 

 
Figure 1. 

The Kurtogram illustrates the interaction between electrical devices.  

 

3.2. Hybrid Deep Learning 

Table 1, the proposed hybrid deep learning development application CNN extracts deep functions from electrical 

functions through spiral layers and max pooling, and integrates LSTM transmission function to learn data change patterns.  

 

Table 1. Outlines the operation. 

 
Table 1  

Hybrid CNN-LSTM for non-intrusive load monitoring 

Algorithms: CNN-LSTM with Residual blocks and AL. 

STEP 1: Load the required libraries: Import TensorFlow, NumPy, Matplotlib, and OS for model development and data 

management. 

STEP 2: Define dataset paths: Specify paths for training and testing datasets. 

STEP 3: Define image parameters: Image size, batch size and appliance interactions. 

STEP 4: Data preprocessing and augmentation: Apply necessary transformations to enhance training and test datasets. 

STEP 5: CNN-LSTM model design:   

STEP 5.1: The convolution operator as in Equation 1: convolution is structured into 3 layers (1 block). The 

network consists of 3 blocks with convolutional filter sizes of 32, 64, and 128. A 3×3 kernel is applied with 

ReLU activation and SAME padding to maintain the spatial dimensions.  

STEP 5.2: MaxPooling with a 2×2 filter is applied at each block to reduce spatial dimensions. The feature maps are 

then passed through a dense layer with 128 units. 

STEP 5.3: Reshape feature maps for LSTM: In Equations 2 to 7 the extracted features are reshaped into sequential 

data format to prepare for LSTM processing.  

STEP 5.4: Pass features through LSTM: The LSTM layer has 64 memory units to capture sequential relationships 

in the data.  

STEP 5.5: The output is passed through a Softmax function to predict the probability distribution over device 

operations. 

STEP 5.6: The model is trained using the Adam optimizer with a learning rate of 10-4, ensuring stable parameter 

updates during training. 

STEP 6: CNN-LSTM model with Residual Blocks and Attention Mechanisms for improved feature learning.   

STEP 6.1: CNN-LSTM with RB: In Equation 8 RB is incorporated between the first and third convolutional blocks 

to mitigate vanishing gradient issues. The feature maps from the first block are added to the output of 

deeper layers.  

STEP 6.2: CNN-LSTM with AL: In Equation 9 AL is integrated between the convolutional layers and LSTM to 

selectively focus on the most relevant features, enhancing the model's ability to learn important patterns. The attention 

mechanism is defined with Q, K, and V set to 128, allowing the network to capture dependencies across different 

regions. The attention module employs 4 attention heads, each with a head size of 128, enabling parallel feature 

extraction and improving the model’s ability to process spatial and sequential information effectively.     

STEP7: Evaluates the training results by comparing the performance of CNN-LSTM, CNN-LSTM with RB, CNN-

LSTM with AL.   

STEP 8: Final steps. 
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3.3. Performance Measurement 

This study applied precision, accuracy, recall, and MAE to comprehensively evaluate the results, such as Equations 10, 

11, 12, and 13, as well as a fusion matrix to display the variance of device operation classification. 

 

Accuracy =
TP + FN

TP + FP + FN + TN
 (10) 

Precision
TP

= TP + FP
 (11) 

Recall
TP

= TP + FN
 (12) 

MAE =
1

n
∑|yi − ŷi|

n

i=1

 (13) 

 

True Positive (TP) and True Negative (TN) represent the number of correctly classified samples, while False Positive 

(FP) and False Negative (FN) indicate the number of misclassified samples. Let n be the number of samples in the dataset, 

𝑦𝑖  be the actual value of the 𝑖-th sample, and �̂�𝑖 be the predicted value of the 𝑖-th sample. The MAE describes the average 

error of the model in terms of the predicted variable's units. 

 

4. Results  
In this section are divided into 3 parts: 1) Experimental parameters, including the training computer settings and the 

DL library used for training the network; 2) Training results, describing the effectiveness of the proposed network in 

training to learn data characteristics; 3) Device behavior classification, showing the results in the form of confusion matrix 

for comparing the classification results. 

 

4.1. Training parameters 

A computer that conducts experiments on a windows operating system equipped with Intel core i5-12400f LGA 1700 

@ 2 processor. 5 GHz, with 32 GB of RAM and 5600 MHz speed, and trained with NVIDIA RTX 4070, with 12 GB of 

VRAM and 5,888 CUDA cores. NumPy and TensorFlow are used as network design tools, including network testing. The 

training parameters are defined as standardization in Table 2. 

 
Table 2. 

Parameter of training model. 

Parameter Value  

Image size 100x100x3 

Learning rate 10-4 

Epoch 150 

Batch size 64 

Loss function  Categorical cross-entropy 

Optimization Adam 

 

4.2. Training results 

Tables 3, 4, and 5 present the training results, including precision, recall, and accuracy in testing, as well as MAE and 

the training time for each model. The experimental results demonstrate the effectiveness of CNN-LSTM, CNN-LSTM with 

Residual, and CNN-LSTM with AL in enhancing network performance. Among these models, CNN-LSTM achieves a 

favorable MAE and demonstrates its ability to learn complex data patterns. The addition of RB connections further 

improves the model's capacity to handle complex data, as indicated by a continuous decrease in MAE. Notably, when 

applied to three devices, the MAE reaches 0.0171. The results indicate that integrating both RB and AL mechanisms 

enhance performance, achieving a balanced outcome between training efficiency, test accuracy, and training time. 

 
Table 3. 

 Results of the operation of 2-appliances. 

Model Precision 

(Training) 

Recall 

(Training) 

Accuracy 

(Testing) 

MAE Time 

(Minute) 

CNN-LSTM  98.21 % 98.21 % 96.35 % 0.0144 16.15 

CNN-LSTM with Residual 98.59 % 98.59 % 98.59 % 0.0059 20.76 

CNN-LSTM with Attention 98.40 % 98.40 % 98.40 % 0.0068 16.03 
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Table 4. 

Results of the operation of 3-appliances. 

Model Precision 

(Training) 

Recall 

(Training) 

Accuracy 

(Testing) 

MAE Time 

(Minute) 

CNN-LSTM  82.37 % 79.02 % 81.06 % 0.0996 14.30 

CNN-LSTM with Residual 95.61 % 95.61 % 95.61 % 0.0171 18.19 

CNN-LSTM with Attention 95.04 % 94.98 % 95.04 % 0.0199 14.62 

 
Table 5. 

Results of the operation of 4-appliances. 

Model Precision 

(Training) 

Recall 

(Training) 

Accuracy 

(Testing) 

MAE Time 

(Minute) 

CNN-LSTM  89.91 % 82.51 % 80.54 % 0.0918 14.76 

CNN-LSTM with Residual 92.12 % 92.07 % 92.07 % 0.0320 18.69 

CNN-LSTM with Attention 93.09 % 92.71 % 92.94 % 0.0310 14.87 

  

4.3. Test Results 

Tables 3, 4, and 5 were tested using a confusion matrix, as shown in Figure 2, to evaluate classification performance. 

The results indicate high accuracy in distinguishing different device operations. However, some cases exhibit minor 

misclassification. For instance, in the classification of 2-appliances, misclassification occurred between data12 and data15. 

Similarly, in the classification of 4-appliances, misclassification was observed in data1234, data1235, data1245, and 

data1345, with lower classification performance compared to other device operations. This variability suggests that the 

classification errors may stem from the similarities in power consumption patterns among certain devices, leading to 

overlapping feature representations and misclassification. 

 

 CNN-LSTM CNN-LSTM with Residual CNN-LSTM with Attention 

2 

appliances 

   

3 

appliances 

   

4 

appliances 

   
Figure 2. 

Results of appliance operation classification. 

 

5. Discussion 
This research presents a hybrid deep learning model that integrates the capabilities of CNN and LSTM to enhance the 

accuracy of NILM. The proposed approach aims to reduce classification errors in electrical device identification while 

improving the model’s ability to handle complex data. The incorporation of RB and AL in the model ensures a balance 

between learning efficiency and stable training. The proposed design follows the methodologies of Zhu [19] and Zhang 
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[20]. The model was tested using data from the operation of 2-appliances, 3-appliances, and 4-appliances, leveraging 

Kurtogram analysis to emphasize key features of electrical signals [17]. This approach contributes to improving the 

accuracy and effectiveness of NILM technology. From the experimental results, an analysis of the outcomes reveals that 

CNN-LSTM performs worse than all other models, particularly in Table 3, where it achieved a test accuracy of 81.06% and 

the highest MAE of 0.0996. This indicates that the baseline model struggles to learn complex data patterns effectively, 

despite its shorter training time. In contrast, CNN-LSTM with RB demonstrates improved performance and significantly 

reduces MAE. This suggests that integrating RB connections enhances the model’s ability to learn complex data and 

improves classification accuracy. However, adding RB connections increases training time, especially when analyzing the 

operation of 2-appliances and 4-appliances. Meanwhile, CNN-LSTM with Attention excels in balancing accuracy and 

training time. As shown in Table 5, this model achieved the highest test accuracy of 92.94% and the lowest MAE of 

0.0310, indicating effective learning without requiring as many computational resources as the RB model. Furthermore, 

when analyzing the operation of 3-appliances, the Attention-based model achieved 95.04% accuracy, slightly lower than 

the 95.61% accuracy of the RB model. However, the AL model required significantly less training time, demonstrating that 

the AL mechanism enhances accuracy while optimizing resource usage during training. 

 

6. Conclusion 
 This research proposes a hybrid CNN-LSTM model for NILM. The proposed network consists of three variations: 

CNN-LSTM, CNN-LSTM with Residual, and CNN-LSTM with AL, designed for classifying electrical devices. The 

experiments were conducted with different combinations of electrical device operations, including 2-appliance, 3-

appliance, and 4-appliance scenarios. To ensure standard evaluation, precision, recall, accuracy, MAE, and training time 

were used to assess the performance of the proposed networks. The proposed network was trained using data from the 

operation of multiple electrical devices. The experimental results demonstrate that the model achieved training accuracies 

of 98.59%, 98.59%, and 93.09%, and the highest test accuracies of 98.59%, 95.61%, and 92.94% for 2-appliance, 3-

appliance, and 4-appliance scenarios, respectively. These results highlight the model's capability to learn complex data 

patterns effectively. The findings suggest that the Hybrid CNN-LSTM approach is an effective method for improving the 

classification of electrical device operations, striking a balance between accuracy and computational efficiency. 

Additionally, the study provides insights into further enhancing NILM technology, enabling its practical application in 

smart building energy management systems. 

 

References 
[1] I. Abubakar, S. N. Khalid, M. W. Mustafa, H. Shareef, and M. Mustapha, "An overview of non-intrusive load monitoring 

methodologies," presented at the IEEE Conference Energy Convers (CENCON), Johor Bahru, Malaysia, 2015, pp. 221–226. 

https://doi.org/10.1109/CENCON.2015.7409513, 2015. 

[2] Y. Liu, J. Qiu, and J. Ma, "SAMNet: Toward latency-free non-intrusive load monitoring via multi-task deep learning," IEEE 

Transactions on Smart Grid, vol. 13, no. 3, pp. 2412-2424, 2021.  https://doi.org/10.1109/TSG.2021.3139395 

[3] H. Rafiq, X. Shi, H. Zhang, H. Li, M. K. Ochani, and A. A. Shah, "Generalizability improvement of deep learning-based non-

intrusive load monitoring system using data augmentation," IEEE Transactions on Smart Grid, vol. 12, no. 4, pp. 3265-3277, 

2021.  https://doi.org/10.1109/TSG.2021.3082622 

[4] R. Machlev, A. Malka, M. Perl, Y. Levron, and J. Belikov, Explaining the decisions of deep learning models for load 

disaggregation (NILM) based on XAI,” IEEE general meeting power & energy society (PESGM). USA: Denver, CO. 

https://doi.org/10.1109/PESGM48719.2022.9917049, 2022. 

[5] Y. Yang, J. Zhong, W. Li, T. A. Gulliver, and S. Li, "Semisupervised multilabel deep learning based nonintrusive load 

monitoring in smart grids," IEEE Transactions on Industrial Informatics, vol. 16, no. 11, pp. 6892-6902, 2019.  

https://doi.org/10.1109/TII.2019.2955470 

[6] L. Yin and C. Ma, "Interpretable incremental voltage–current representation attention convolution neural network for 

nonintrusive load monitoring," IEEE Transactions on Industrial Informatics, vol. 19, no. 12, pp. 11776-11787, 2023.  

https://doi.org/10.1109/TII.2023.3252407 

[7] W. Yang, C. Pang, J. Huang, and X. Zeng, "Sequence-to-point learning based on temporal convolutional networks for 

nonintrusive load monitoring," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-10, 2021.  

https://doi.org/10.1109/TIM.2021.3106678 

[8] F. Ciancetta, G. Bucci, E. Fiorucci, S. Mari, and A. Fioravanti, "A new convolutional neural network-based system for NILM 

applications," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-12, 2020.  

https://doi.org/10.1109/TIM.2020.3035193 

[9] Z. Zhang et al., "A multistate load state identification model based on time convolutional networks and conditional random 

fields," IEEE Transactions on Artificial Intelligence, vol. 4, no. 5, pp. 1328-1336, 2022.  

https://doi.org/10.1109/TAI.2022.3203685 

[10] Y. Su, H. Peng, M. Tan, and J. Chen, "Integrating graph signal processing and multitask temporal convolutional networks for 

household nonintrusive load monitoring," IEEE Transactions on Instrumentation and Measurement, vol. 73, pp. 1-12, 2024.  

https://doi.org/10.1109/TIM.2024.3379372 

[11] Z. Fang, D. Zhao, C. Chen, Y. Li, and Y. Tian, "Nonintrusive appliance identification with appliance-specific networks," IEEE 

Transactions on Industry Applications, vol. 56, no. 4, pp. 3443-3452, 2020.  https://doi.org/10.1109/TIA.2020.2994279 

[12] M. Muaz, I. Zinnikus, and M. Shahid, "NILM domain adaptation: When does it work?," presented at the In 2024 10th 

International Conference on Smart Computing and Communication (ICSCC) (pp. 524-528). IEEE, 2024. 

[13] A. Prommakhot and J. Srinonchat, "Combining convolutional neural networks for fungi classification," IEEE Access, vol. 12, 

pp. 58021–58030, 2024.  https://doi.org/10.1109/ACCESS.2024.3391630 

https://doi.org/10.1109/CENCON.2015.7409513
https://doi.org/10.1109/TSG.2021.3139395
https://doi.org/10.1109/TSG.2021.3082622
https://doi.org/10.1109/PESGM48719.2022.9917049
https://doi.org/10.1109/TII.2019.2955470
https://doi.org/10.1109/TII.2023.3252407
https://doi.org/10.1109/TIM.2021.3106678
https://doi.org/10.1109/TIM.2020.3035193
https://doi.org/10.1109/TAI.2022.3203685
https://doi.org/10.1109/TIM.2024.3379372
https://doi.org/10.1109/TIA.2020.2994279
https://doi.org/10.1109/ACCESS.2024.3391630


 
 

               International Journal of Innovative Research and Scientific Studies, 8(2) 2025, pages: 575-582
 

582 

[14] S. Mao, H. Li, Y. Zhang, and Y. Shi, "Prediction of ionospheric electron density distribution based on CNN-LSTM model," 

IEEE Geoscience and Remote Sensing Letters, vol. 21, 2024.  https://doi.org/10.1109/LGRS.2024.3437650 

[15] X. Zhang, Y. Mao, Q. Yang, and X. Zhang, "A plant leaf disease image classification method integrating capsule network and 

residual network," IEEE Access, vol. 12, pp. 44573–44585, 2024.  https://doi.org/10.1109/ACCESS.2024.3377230 

[16] Y. Tan and X. Ding, "Split-attention CNN and self-attention with RoPE and GCN for voice activity detection," IEEE Access, 

vol. 12, pp. 156673–156682, 2024.  https://doi.org/10.1109/ACCESS.2024.3486003 

[17] S. Yaemprayoon and J. Srinonchat, "Exploring CNN model with inrush current pattern for non-intrusive load monitoring," 

Computers, Materials & Continua, vol. 73, no. 2, pp. 3667–3684, 2022.  https://doi.org/10.32604/cmc.2022.028358 

[18] J. Antoni, "The spectral kurtosis: a useful tool for characterising non-stationary signals," Mechanical Systems and Signal 

Processing, vol. 20, no. 2, pp. 282-307, 2006.  

[19] L. Zhu, "A novel industrial load disaggregation model based on CNN-LSTM neural network with attention mechanism and 

genetic algorithm," presented at the International Conference on Power and Energy Systems (ICPES), Chengdu, China, 2023. 

https://doi.org/10.1109/ICPES59999.2023.10400079, 2023. 

[20] D. Zhang, "Non-invasive load monitoring based on CNN-LSTM-attention," presented at the International Electrical and 

Energy Conference (CIEEC), Harbin, China, 2024. https://doi.org/10.1109/CIEEC60922.2024.10583635, 2024. 

 

https://doi.org/10.1109/LGRS.2024.3437650
https://doi.org/10.1109/ACCESS.2024.3377230
https://doi.org/10.1109/ACCESS.2024.3486003
https://doi.org/10.32604/cmc.2022.028358
https://doi.org/10.1109/ICPES59999.2023.10400079
https://doi.org/10.1109/CIEEC60922.2024.10583635

