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Abstract 

Advances in deep learning techniques have achieved spectacular success in the detection of plant diseases. A new method 

for detecting black pepper leaf disease using deep learning was proposed. In the proposed scheme, the SqueezeNet model is 

used, which is a Convolutional Neural Network (CNN), where the CNN is a subset of deep learning networks. The disease 

detection is based on the visual characteristics of the black pepper leaves. Thus, the proposed method is an image 

classification scheme using a trained SqueezeNet that detects whether the pepper leaves are healthy or diseased. The 

detection accuracy is found to be more than 99%. The early detection of defects, such as deformation and discoloration of 

pepper leaves, forewarns the onset of diseases, and the cultivator of pepper wines can undertake appropriate 

countermeasures. 
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1. Introduction 

In botanical and agricultural sciences, the health of a plant can be determined by the visual observation of its leaves. 

Any abnormalities in the texture, color, and shape of the leaves indicate the presence of some disease in those plants. 

Several conventional image processing methods are available to distinguish healthy images from diseased ones. 

Conventional methods extract the characteristic features of the target image and match them with the knowledge-based 

features of healthy/diseased images to arrive at a decision. The major drawbacks are computationally expensive feature 

extraction algorithms, imperfect knowledge bases, and inaccuracies due to noise, distortion, etc. On the other hand, it has 
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been well established that a powerful, well-trained Convolutional Neural Network (CNN) can accurately predict the 

presence of diseased leaf images from healthy ones in a set of mixed images, even in the presence of relatively large noise 

and distortion. Therefore, it is not difficult to build and train a CNN to detect abnormalities in the texture, coloration, and 

shape of plant leaves based on their images. Once it is known that a plant (or creeper, as in the case of black pepper) is 

afflicted with a disease, its type, degree of severity, etc., can be further determined using more powerful CNNs capable of 

multi-object classification. The visual differences between healthy and diseased pepper leaf images are shown in Figure 1. 

 

 
Figure 1. 

Healthy and diseased pepper leaf images. 

 

Due to technological advancements, several sophisticated software CNN models and tools are available [1],which are 

well-tested, debugged, and built-in models from well-known academic institutions and information technology companies. 

Some of them are LeNet, AlexNet, VGG16, ResNet50, GoogleNet, Inception V3, SqueezeNet, and so on. In this study, we 

used SqueezeNet CNN for black pepper leaf image classification. 

 

1.1. SqueezeNet 

Although several CNN architectures [1] are available to achieve a given level of accuracy, they are burdened by a very 

large number of parameters, which results in a huge storage requirement in the range of 20–500 MB (approx.). On the other 

hand, Squeezenet [2] is designed with fewer parameters for the same level of accuracy, which results in a reduced memory 

space of approximately 5 MB. It has lower computational complexity with faster execution of the training process. The 

advantages of smaller size are: 

• Lower Computational overhead for training and testing. Different training parameters can be optimally chosen for 

shorter training periods with higher accuracy. 

• Cost of exporting trained models. Due to the reduced size of the model, export cost is relatively low.   

• Compact FPGA hardware realization. 

Squeezenet (SN) is a supervised learning model with backpropagation. Squeezenet is typically designed for 

classification instead of regression. In PLC-SN, Squeezenet is used as the binary classifier, where the output is the class 

name, either 1 (healthy) or 2 (diseased). 

 

1.2. Main Objective 

The main objective of this paper is to use a CNN formed by SqueezeNet (SN) for classifying the images of black 

pepper leaves to detect disease-afflicted pepper creepers from healthy ones. The proposed method is denoted as Pepper 

Leaf Classification using SqueezeNet (PLC-SN), which is a binary (two-level) classifier as it detects whether the input 

image is healthy or diseased. 

 

1.3. Organization of the Paper 

The remaining part of the paper is organized as follows. Section 2 briefly reviews the existing works on image 

classification of plant leaves using CNNs. In Section 3, the basic workings of PLC-CNN are presented. Section 4 contains 

the performance evaluation of PLC-SN based on simulated experimental results. Section 5 provides the conclusion. 

 

2.  Literature Review 
In this section, only those papers related to plant leaf image classification based on ANNs and CNNs are reviewed 

briefly. In Bhadur and Rani [3], the authors have reviewed the application of CNNs for the detection of diseases in plants 

based on their leaf images. Various layers of CNN and their functions are described in the context of leaf image 

classification. Reviews of existing works in detecting diseases in various agricultural/fruit plants, such as maize, apple, 

tomato, potato, etc., have been presented in detail. In Taterwal [4], pepper leaf image classification for disease detection 

has been presented. The author has described the custom-designed CNN, based on a three-block VGGnet, to suit the 

classification of pepper leaf images. Standard libraries related to machine learning have been used to build the custom 

CNN. The author has compared the proposed method with KNN (K-Nearest Neighbor algorithm), Naive Bayes Algorithm, 
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Decision Tree Algorithm, and Logistic Regression Algorithm. The disadvantage of this work is the large size of the VGG 

net, which prohibits its application to mobiles and FPGA/ASICs. In Liu, et al. [5], the authors have used a modified 

AlexNet architecture in combination with parts of GoogleNet’s inception model to detect unhealthy apple leaf images. 

From a relatively small set of unhealthy images, a larger set is derived using image rotation, brightness control, and contrast 

enhancement. The proposed method is compared with AlexNet, GoogLeNet, ResNet-20, and VGGNet-16 and is found to 

be superior to them by achieving an accuracy of about 97%. In Lin, et al. [6], a matrix-based convolutional neural network 

(M-bCNN) has been proposed for fine-grained classification of wheat leaf images. The authors have claimed that the 

accuracy attained by M-bCNN is about 91%. Here, the matrix-based architecture has a larger size and higher computational 

complexity. However, the accuracy achieved is less than the achievable accuracy of 98-99%. 

In Shijie, et al. [7], the authors have used a combination of the VGG16 network and transfer learning to classify tomato 

plant diseases by examining their leaf images. The method achieves an accuracy of about 89%, which is relatively low. In 

Prajwala, et al. [8], LeNet CNN is used for tomato leaf disease detection by implementing 10-level classifications. The 

classification algorithm is found to have an accuracy of 94.85%. 

In Rangarajan, et al. [9], pre-trained VGG16 and AlexNet are used based on transfer learning to classify tomato leaf 

images. Here, the output is designed to detect seven distinct disease classes. The AlexNet model achieves 97.49% accuracy, 

while VGG16 achieves 97.23%. In Ma, et al. [10], the authors have designed a deep learning CNN for cucumber leaf image 

classification to recognize four types of cucumber diseases, namely anthracnose, downy mildew, powdery mildew, and 

target leaf spots. The classification accuracy of the deep CNN is found to be 93.4%. 

In Dai, et al. [11], a study on the recognition of pepper leaf diseases using enhanced lightweight convolutional neural 

networks (CNNs), based on the GoogLeNet architecture, has been presented. The enhanced lightweight CNN model is 

designed to be computationally efficient, making it suitable for deployment on devices with limited resources, such as 

mobile or embedded systems. Here, six types of pepper leaf classification are presented that achieve an accuracy of 97.87. 

In Mathew and Mahesh [12], the article focuses on the detection of diseases in bell pepper plants using YOLO (You 

Only Look Once) v5, a state-of-the-art object detection algorithm. The study provides improved accuracy and speed of 

disease detection in bell pepper leaves, which is critical for early intervention and effective crop management. YOLO v5 is 

chosen for its efficiency and ability to process images quickly, making it suitable for real-time applications. 

In Alatawi, et al. [13], the application of the VGG-16 deep learning model for detecting plant diseases is explored by 

classifying the corresponding plant leaf images. This study highlights the potential of artificial intelligence (AI) in 

agriculture, particularly for the early and accurate identification of plant diseases, which is crucial for improving crop yield 

and reducing losses. The model has used 19 different classes of plant diseases and achieved a classification accuracy of 

95.2%. 

In Atila, et al. [14], the authors have used the EfficientNet deep learning model for classifying plant leaf diseases. The 

model was trained using the PlantVillage dataset. In this binary classification, a transfer learning technique is adopted to 

achieve an accuracy of 99.37%. 

In Bezabh, et al. [15], the study presents a novel approach for classifying pepper diseases using deep learning 

techniques based on a concatenated convolutional neural network (CCNN) model, termed CPD-CCNN, which combines 

multiple CNN architectures to improve the accuracy of disease classification in pepper plants. Here, VGG16 and AlexNet 

are concatenated with suitable modifications to achieve an accuracy of 95.82%. 

In Kini, et al. [16], the authors explore the application of transfer learning with convolutional neural networks 

(ConvNets) for the early detection of black pepper leaf diseases. The study focuses on leveraging pre-trained deep learning 

models to improve the accuracy and efficiency of disease prediction at an early stage, which is critical for effective crop 

management. Here, five types of black pepper diseases are classified to achieve an accuracy of 99.67%. 

In all the above schemes, accuracy greater than 99.7% has not been reached, whereas in our proposed PLC-SN, the 

training accuracy is 100% and the classification (detection) accuracy is more than 99.7%. This high accuracy is achieved 

using a special way of dataset augmentation which is explained later in section 3. F.  

 

3. Methodology  
3.1. Architecture of SqueezeNet 

SqueezeNet (SN) is a lightweight convolutional neural network architecture designed to achieve AlexNet-level 

accuracy on image classification tasks while using significantly fewer parameters. Its primary goal is to provide a smaller 

model with reduced computational and memory requirements, making it well-suited for resource-constrained environments 

like mobile and embedded systems. The key features of the SN architecture are as follows. 

 

3.1.1. Fire Modules 

The building block of SqueezeNet is the Fire Module, which consists of two main layers: 

• Squeeze Layer: A 1x1 convolutional layer that reduces the number of input channels. 

• Expand Layer: A combination of 1x1 and 3x3 convolutional filters that expands the feature maps after the squeeze 

layer. 

This design reduces the computational cost by performing expensive 3x3 convolutions on fewer input channels. 
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3.1.2. Global Average Pooling 

Instead of fully connected layers, SqueezeNet uses global average pooling at the end of the network. This reduces the 

number of parameters and prevents overfitting. 

 

3.1.3. Parameter Reduction Strategies 

• 1x1 Convolutions: Reduce the depth of feature maps, thereby decreasing the number of parameters. 

•  Delayed Downsampling: Downsampling (via max pooling) is postponed until later in the network, allowing the 

convolutional layers to operate on larger feature maps for better feature extraction. 

 

 3.1.4. Different Layers of SqueezeNet 

SN has 68 layers in total and it is described as follows.  

1. Input Layer: 

Input image size: 256×256×3  

(modified to match the image size) 

2. Initial Convolution Layer: 

                     96 filters of size 7×7 with stride 2 (conv1) 

                     Followed by ReLU activation and max pooling (3×3, stride 2) 

3. Fire Modules: 

Fire Modules 2 through 9, grouped as follows:  

Fire2 to Fire4 

Max pooling layer (3×3, stride 2) 

Fire5 to Fire8 

Max pooling layer (3× 3, stride 2) 

Fire9 

4. Final Layers: 

Convolution layer with 2 filters (for binary Image classes). 

Global average pooling layer. 

Softmax activation for classification 

The first layer is the “Image Input Layer” that accepts the input image for classification. The last layer is the 

“Classification Layer”. The functions of different layers and the working of SN are given in Iandola, et al. [2].  

 

3.2. Dataset Organization 

In Machine Learning (ML), especially in tasks like image classification, object detection, or segmentation, image files 

are stored in disk folders rather than directly in memory for the following reasons. 

 

 
Figure 2.  

imds folder structure. 

 

Images can take up significant amounts of memory, especially if the dataset is large. Storing all images in memory 

(RAM) can quickly exceed the capacity of most systems. By storing images on disk, they can be loaded into memory only 

when needed during training or inference, reducing memory usage. Images stored in disk folders can be easily accessed and 

shared across distributed systems or cloud storage solutions. Preprocessing operations on images, like scaling, filtering, 

rotation, etc., are supported by Matlab or Python, before loading the images into the ML model.  

In MATLAB, the image data are stored in the imds (Image Data Store) [17] folder with two sub-folders named "1" and 

"2." The RGB leaf images are of size 256×256×3. The status of the leaf images is determined by an expert after careful 

examination. The healthy leaf images are stored in "1" with label values = 1, and the diseased images in "2" with label 
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values = 2. The folder structure is shown in Figure 2. In general, the number of healthy images in folder "1" is equal to the 

number of diseased images in folder "2." 

The dataset is gathered by taking the photograph of leaf images directly by visiting the plantation sites and classified 

by the experts from the local horticulture organization. 

 

3.3. Preprocessing of Leaf Images 

In PLC-SN, each image, either healthy or diseased, is preprocessed as follows.  

 Let A be an original leaf image matrix of size 256×256×3 as shown in Figure 3.  

 

 
Figure 3.  

Leaf Image A of size 256×256×3. 

 

 Then, A is flipped left-right using the fliplr(A) function. The flipped image is horizontally concatenated with A to get B as, 

 

 
Figure 4.  

 Leaf image B of size 256×512×3. 

 

B= [A, fliplr(A)]                                                                          (1)                                                                                                                  

Image B is shown in Figure 4. 

The size of B is 256×512×3. Now, B is flipped up-down to obtain C as C = flipud(B). Then, the composite image 

matrix D is obtained as the vertical concatenation of B and C as, 

𝑫 = [
𝑩
𝑪
] = [

𝑩
flipud(𝑩)

]                                                                         (2) 

 

The composite image matrix D is shown in Figure 5. 

Now, the height of D is the double of that of B, and the size of D is 512×512×3. From Figure 5, we observe that the 

preprocessing of A generates a symmetric image D. This preprocessing operation (flip and concatenate) is applied to all the 

images of the image data store (imds), including folders “1”, and “2”. The preprocessed collection image D’s of size 

512×512×3 form the dataset as, 

                                                                CD = [ D{1}, D(2},…,D{k},…, D{K}]                                               (3)                                                                

 Here, k varies from 1 to K, where K is the total number of images in imds. In PLC-SC, we have 500 healthy leaf 

images and 500 diseased images, making a total of 1000 images. Thus, K = 1000. After a few trials and errors, it was found 

that the composite images, D{k}’s, perform better as inputs to the SN than the original A’s. Now, the collection CD acts as 

the effective imds that forms the overall dataset. 
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3.4. Training, Validation, and Test Data Image Matrices 

For the correct operation of the SN, the total number of images should be split into 3 sub-groups as Train, Validation, 

and Test datasets. This operation is carried out using the splitEachLabel(…) function as, 

[imdsTrain, imdsVal,imdsTest] = splitEachLabel(imds, 0.7,0.15,0.15,‘randomized’);  (4) 

The argument, ‘randomized’ means, the split operation randomizes the order of images, including their labels, stored in 

imds. Equation specifies that in the splitting operation, the standard split ratios is used as,   

imdsTrain:imdsVal:imdsTest=[0.7,0.15,0.15]                                    (5) 

Since the total size is K =1000, allocations for the images are, 

imdsTrain=700, imdsVal=150, imdsTest=150                                   (6) 

When the overall dataset is split, the corresponding labels are also split accordingly. 

 

3.5. Working of the Squeezenet 

The Squeezenet is constructed as described in section 3.A. The Squeezenet classifier works in three stages. 

• Training Phase 

• Test Phase 

• Application Phase 

The block diagram of the training phase followed by the test phase is shown in Figure 6. 

 

3.5.1. Training Phase 

A PLC-SN is built based on supervised training. In Figure 6, imdsTrain is the training input, that is a subset of imds as 

indicated by (4).  

 

 
Figure 5.  

Composite image D. 

 

 
Figure 6.   

Basic Block diagram of a PLC-SN Classifier. 

In MATLAB, imdsTrain is a structure that contains the images and their respective labels. During the training process, 

the sequence of training matrices from imdsTrain and the matching labels are applied to the PLC-SN. The training process 

involves multiple iterations, and the PLC-SN model learns the complex relationship between the training images and their 

labels. That is, during the training, the model learns the functional relationship by successively adjusting its internal 

parameters based on the backward propagation principle. 

 

3.6. Training Options 

The training of the SN is carried out using suitable training option. The training option used in PLC-SN is as follows.  
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options = trainingOptions('sgdm', ... 

    'InitialLearnRate',0.001, ... 

    'MaxEpochs',20, ... 

    'Shuffle','every-epoch', ... 

    'LearnRateDropFactor',0.1, ... 

    'LearnRateDropPeriod',20, ... 

    'ValidationData',imdsVal, ... 

    'ValidationFrequency',20, ... 

    'MiniBatchSize',30, ... 

    'Verbose',true,...  

'Plots','training-progress');                                                      (7) 

The descriptions of different terms used in (7) are given in reference [2]. The numerical values are decided by 

conducting several trials and fine tuning the parameters as shown by the flowchart of Figure 7. With inputs 

imdsTrain,layers,options ready the training process is started by, 

net =trainNetwork(imdsTrain,layers,options)                            (8) 

After training with given number of epochs, testing is carried out to find the PTE. If PTE is greater than the specified 

error threshold ET, say 0.5%, then the hyper parameters are readjusted and fine-tuned further until PTE ≤ ET. Adjustment 

of hyper parameters, by fine tuning process, is shown in the flowchart of Figure 7. 

 

3.6.1. Validation 

Validation [18] in machine learning refers to the process of assessing a model's performance on the imdsVal dataset, 

which is a subset of imds. The goal of validation is to tune the model's hyperparameters and prevent overfitting while 

ensuring that it generalizes well to unseen data. 

 

3.6.2. Test Phase 

Once the training phase is fully completed, the PLC-SN enters the test phase, as shown in Figure 6. During the test 

phase, the trained PLC-SN accepts the test input matrices imdsTest and predicts the label output vector Ypred. The ground 

truth values, stored in vector form and denoted by Ylabel, are given by, 

Ylabel = imdsTest.Labels   (9)     

 

 
Figure 7.  

Flow chart for fine tuning SqueezeNet 

 

The test error vector is given by, 

        Error = Ylabel - Ypred                                                                 (10) 

With perfect training, Error vector should be all zeros. The non-zero terms of Error represent the Test Error (TE). 

Therefore, TE is given by,      

TE = number of non-zero terms in Error(11) 

Therefore, the Percentage Test Error (PTE) is given by, 
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𝑃𝑇𝐸 =
𝑇𝐸∗100

𝑙𝑒𝑛𝑔𝑡ℎ(𝐸𝑟𝑟𝑜𝑟)
                                                                          (12) 

 

The PTE normalizes the error with respect to the length of the Error, so that the comparison of overall errors for 

different values of length(Error) remains fair. In PLC-SN, length(Error)= 150.  

 

3.6.3.Application Phase  

Once the training and testing are over with almost negligible PTE, the trained CNN is ready for the classification of a 

new leaf image in its composite form (flip and concatenate). The output of the CNN predicts the class (either 1 or 2) of this 

new image. The time taken for the classification task is very small compared to the training time. 

 

4. Results and Discussion 
Experiment 1: The SN is constructed as explained in Section 3. A. The training options are chosen as given by (6). The 

training process is executed using (7).  The resulting training progress Figure are shown in Figure 8.   

 

 
Figure 8.  

Training and test accuracy have reached 100% with Training, validation and test set are of size 700, 150, 150 

 
From Figure 8, it can be seen that both the training (mini-batch) accuracy and validation accuracies are 100% each. On 

testing, it is found that the PTE = 0%. The corresponding training progress plots are shown in Figure 9. 
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Figure 9.   

Training Progress Plots with training and validation accuracy of 100%. 

 

Experiment 2: When the number of epochs, denoted by n_epoch, is high, the error will be zero (as in Experiment 1). 

When n_epoch is decreased, the error gets increased. Let us denote the size of the training set as R. When R is changed the 

overall data size and the validation data size are also changed according to (5).  It can also be observed that R decreases, 

and then also, the error increases. That means increases in n_epoch as well as R, cause a decrease in the error. In this 

experiment, Then_ephoc is increased from 10 to 24 in steps of 2 for each of the three values of R as, R = 400, 360, and 320. 

The resulting PTE’s are calculated. All other parameters are kept same as in Experiment 1. The resulting plots, PTE versus 

n_epoch for R = 400, 360, and 320 are shown in Figure 10.  

 

 
Figure 10.  

PTE versus number of epochs. 

 

From Figure 10, it can be seen that as n-epoch increases, the error values converge to low error levels for all three 

values of R, 400, 360, and 320. 

Experiment 3: The distribution TE, the total number of classification errors as given by (11), over individual classes 

are pictorially represented by the Confusion Matrix chart. In this experiment,n_epoch is set low at 5 to increase the error to 

see the distribution of errors over a wider range. With R = 400 (with validation and test sizes adjusted according to (5), the 

TE value is found to be 18. The Confusion Matrix chart for this experiment is shown in Figure 11. 
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Figure 11.   

Confusion Matrix chart for Experiment 3. 

 

Here, the true positive (TP) is found to be 42, true negative (TN) = 40, false negative (FN) = 8 and false positive (FP) 

= 10. From the confusion matrix, we see that the trend to detect the false positive is slightly higher than to detect the false 

negative. 

 

5. Conclusion 
A new method of black pepper creeper disease detection based on the deep learning convolutional neural network is 

presented. In this method, the standard SqueezeNet is slightly modified and trained to classify the pepper leaf images as 

diseased or healthy. The images in the dataset are concatenated horizontally as well as vertically with the corresponding 

left-right flipped and up-down flipped counterparts. The use of these concatenated images for training is found to increase 

the image classification efficiency of the SqueezeNet to 100%. This method of using doubly concatenated images to 

enhance the training accuracy, especially when the availability of the training dataset is scarce, is our original contribution. 
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