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Abstract 

As wireless communication systems quickly evolve, propelled by new technologies such as 5G and the future 6G, the demand 

for advanced signal processing techniques that are more efficient and robust has grown significantly. This paper presents 

advanced techniques for signal classification and feature extraction in future wireless communication systems. This work 

also aims to enhance the sensitivity and specificity of signal detection in multi-network and complex, diverse environments 

through the application of machine learning algorithms and feature extraction techniques such as PCA. The proposed methods 

are evaluated on simulated pulse signals, such as Gaussian and Chirp pulses in order to demonstrate their performance in 

different real-world settings, i.e., IoT networks, dense communication scenarios, etc. The outcomes indicate noteworthy 

advancements in terms of classification accuracy, computational efficiency, and system resilience, underscoring the promise 

of these augmented techniques for prospective wireless communication applications. Overall, this study represents a new 

paradigm for communication, allowing for smarter, more adaptive approaches to information gathering. 
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1. Introduction 
Over the last few decades, the wireless communication field has undergone a revolution, as demands for higher-speed, 

more reliable, and more efficient communication networks have increased. With the advent of 5G and the predicted 6G 

systems comes an increasing need for new signal processing techniques to deal with the evolving complexity of 

communication scenarios [1, 2]. These next-generation networks will handle hundreds of billions of connected devices such 
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as the Internet of Things (IoT), smart cities, and industrial automation [3, 4], all of which require well-defined classification 

and extraction of signals in continuously changing and complex environments. In wireless communication systems, the term 

signal classification is an important task for identifying and separating different types of signals in the communication 

channel. Traditional signal classification techniques like matched filtering and correlation-based approaches are vulnerable 

to noise, interference, and multipath fading [5]. Accordingly, machine learning (ML) approaches can significantly enhance 

classification accuracy by learning patterns from large datasets [6, 7]. Machine learning techniques, including support vector 

machines (SVM), neural networks (NN), and k-nearest neighbors (KNN), have shown potential results in addressing the 

complexity of non-linear and non-stationary signals [8, 9]. Wireless communication systems rely heavily on feature extraction 

as well as classification. Feature extraction methods can dramatically improve the performance of signal processing tasks 

like noise reduction, signal detection, and classification [10] by turning raw features into more informa tive features. Principal 

Component Analysis (PCA) is a widely used feature extraction technique that is popular because it reduces the dimensionality 

of the data while retaining most of the variance of the data [11]. PCA has received extensive application in wireless 

communications to enhance system performance, especially in large-scale data applications for instantaneous sensing in IoT 

[12]. The signal classification of next-generation wireless communication systems requires advanced machine learning-based 

feature extraction methods along with enhanced algorithms, which we embrace in this paper to assist in signal classification. 

We strive to create a strong structure that is capable of efficaciously classifying and processing signals in complex, multi-

network domains, together with IoT settings. Simulated pulses like Gaussian and Chirp pulses, representing pulses of real 

communication signals, are used to evaluate the performance of the proposed methods. Moreover, the experiments confirm 

that the proposed approach (ML techniques + PCA-based features) outperforms otherwise state-of-the-art classifiers in a very 

competitive manner in terms of accuracy, computational efficiency, and adaptability. 

 

2. Background and Literature Review 
The last few decades have witnessed unprecedented development in wireless communication systems such as 4G, and 

in the near future with the advent of 5G and beyond (6G) technologies. The increasing number of devices, data  traffic, and 

communication requirements is driving advances in the planning of signal processing, feature extraction, and classification 

techniques of these systems [13]. One of the essential aspects of modern communication systems is signal classification, 

which provides a procedure to identify and separate signals in the presence of noise, interference, and multipath  fading [14, 

15]. Thus, focusing on next-generation network requirements, there has been a paradigm shift from traditional methodologies 

to machine learning (ML)-based approaches in this space [16]. 

 

2.1. Signal Classification Techniques in Wireless Communications 

Signal classification is a crucial technology in cognitive radio [17, 18] spectrum management [18] radar detection [18], 

and mobile communications [18]. Traditionally, the training of signal classification systems often depended on matched  

filtering, correlation, Fourier analysis, etc. [19]. However, though these techniques perform well in laboratory settings, their 

abilities drop under real-world conditions such as noise and interference [20]. Consequently, owing to the absence of  known 

model structures, the interest in the use of machine learning techniques for signal classification is growing, owing to their  

potential to learn complex a nd non-linear relationships within the data [21]. The accuracy of signal classification has 

improved substantially using ML (machine learning) models, including supervised and unsupervised learning techniques. 

The most common approaches are based on supervised learning methods such as support vector machines (SVM), decision 

trees, and k-nearest neighbors (KNN), which are able to manage structured data and provide high classification performance 

[22, 23]. In recent years, we see that convolutional neural networks (CNNs) and recurrent neural networks (RNNs), among 

other deep learning methods, have been developed as dominant techniques based on automatic fea ture extraction and signal 

classification procedures in the wireless communication systems domain [24, 25]. 

 

2.2. Challenges in Signal Classification 

However, although these recent advances, challenges remain in terms of signal classification in wireless  communication 

systems. The most difficult thing is to confront the high-dimensional feature expression of communication signals, 

particularly in a scenario of massive heterogeneous data. Conventional feature extraction methods, e.g. Fourier transform or 

wavelet transforms cannot grasp the inherent patterns in the signal data well enough, and thus the  classification results are 

not satisfactory [26]. In addition, the emergence of IoT devices, as well as the explosion of connected devices in future 

networks, make it necessary to shift towards real-time signal classification [27]. Fast, efficient, and scalable classification 

methods are still a  critical need. 

 

2.3. Feature Extraction Techniques in Signal Processing 

One of the essential steps in the circle of signal processing is feature extraction, which is the process of translating raw 

data into a set of informative features suitable for classification, detection, or prediction. Feature extraction in wireless 

communication systems focuses on decreasing the dimension of the signal data with the intention of preserving the most 

important data information [28]. Conventional approaches such as Fast Fourier Transform (FFT) and wavelet transform  have 

been used by many researchers for feature extraction [29]. However, with the increased complexity of communication 

systems, these methods are constrained by computation efficiency and the treatment of non -linearity [30]. To deal with these 

challenges, feature extraction approaches based on dimensionality reduction like Principal Component Analysis (PCA) and 

Independent Component Analysis (ICA) have been introduced to extract highly representative features from the data [11]. 

PCA has been widely adopted for wireless communications as it can eliminate features without losing significant information 
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[31]. Various applications for PCA-based feature extraction which include channel estimation, spectrum sensing, and 

interference mitigation have been studied in the literature [10]. Similarly, ICA, which can separate a multichannel source of 

interference [32] has also been applied in blind source separation. Besides the traditional methods, some recent works have 

focused on deep learning-based feature extraction approaches. An application of unsupervised feature extraction that has 

been used is by means of autoencoders, where the network learns to compress and reconstruct the signal data so that it 

minimizes the error and captures the most useful features [20]. Methods involving sophisticated machine-learning techniques 

to model and classify signals have shown their ability to capture complex, non -linear relationships in the signal data, 

significantly enhancing the accuracy of downstream classification algorithms. 

 

2.4. Machine Learning and Deep Learning for Signal Classification and Feature Extraction  

Using ML and DL methods integrated with feature extraction methods has provided new ways  to enhance signal 

classification in wireless communication systems. For example, deep convolutional neural networks (CNNs) have been used 

to automatically derive hiera rchical features from the raw signal data, thus allowing high-performance classification without 

human intervention for feature engineering [10]. CNNs, well suited to tackle image and sequence data types, have also been 

used in time-series signals in wireless communication systems [33]. A potential solution lies in the integration of deep 

learning models with traditional methods to produce feature extraction from PCA and wavelet transforms as feature inputs. 

For instance, Xu, et al. [24] devised a hybrid approach by combining deep learning models with PCA in the feature extraction 

process, substantially enhancing classification accuracy but reducing computational complexity. In the same way, RNN-

based models have also performed well at handling sequential data in wireless communications where properties of signals 

change over time [34]. 

 

2.5. Emerging Trends and Applications 

The increasing complexity of wireless networks necessitates the development of more efficient and intelligent signal 

processing systems. Such applications may include the cooperation of machine learning and wireless commun ications 

systems, having a decisive impact on system-wide performance as a whole. Machine learning, for example, is being used in 

dynamic spectrum management [17], cognitive radio networks [17], and interference mitigation [17]. Regarding next-

generation wireless networks, especially 5G and 6G, the incorporation of AI will develop adaptive communication methods, 

where systems can optimize spectrum utilization, minimize latency, and bo ost throughput [4, 35]. In addition, with the 

development of the Internet of Things (IoT) and massive machine-type communications (mMTC), signal classification and 

feature extraction face new challenges and opportunities. In these networks, where billions of devices are to coexist, the 

ability to classify signals emitted by various sources in real-time will be a key issue in preserving system performance [36-

38]. These challenges can be solved through machine learning techniques using innovative feature extraction methods that 

adapt the machine to learn through data. Your two latest articles after the literatu re review focused on wireless communication 

systems based on signal classification, extraction, and machine learning applications, which both reinforced your research 

foundation. Hybrid optimization techniques integrating traditional and contemporary appro aches for complex engineering 

problems are discussed. The authors delve into how machine learning models are combined with optimization algorithms to 

improve performance in high-dimensional, computationally expensive scenarios [39]. Here, this paper emphasizes the use of 

multi-objective optimization algorithms in the field of engineering design problems. They discuss algorithms, evolutionary 

techniques, and hybrid methods that model the multi-faceted problem solution with multiple design objectives that operate 

in the real world and, often, are at odds with each other. Modern wireless communication systems depend on robust signal 

classification for identifying and differentiating signals within multi-antenna receivers under noise, interference, and high-

dimensional conditions. Classic methods based on Fast Fourier Transform (FFT) and wavelet transform are widely used for 

feature extraction and classification. Another effective method when working with structured environments, but with  

limitations when handling non-linear signal properties and computational inefficiencies as communication systems become 

more complex. Recently, machine learning (ML)-based methods have attracted researchers as they have obtained outstanding 

classification accuracy and robustness. Methods like support vector machine (SVM), decision tree, and k -nearest neighbor 

(KNN) are supervised learning methods that can efficiently handle structured data to provide high -performance classification. 

Additionally, dimensionality reduction methods, such as Principal Component Analysis (PCA), have been embedded in these 

systems to minimize computational requirements while retaining key features of the signal. Specifically, the goal of the 

important programming task is to apply and evaluate different machine-learning methods in the classification of the signal. 

The model combines common functionality extraction methods with current forms of ML models like SVMs, KNNs, and 

Neural Networks to check their performance. Feature optimization and learning are performed using PCA-based methods 

along with deep learning-based techniques to enhance computational efficiency and accuracy significantly. This section 

formulates the literature survey, highlighting the techniques, advantages, and drawbacks of other approaches used to tackle 

the issues in modern wireless communication networks [18]. This study discusses various optimization algorithms, focusing 

on traditional methods such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The paper highlights the 

strengths and limitations of these methods when applied to large-scale engineering problems [21]. It proposes an adaptive 

variant of PSO to improve global optimization capabilities. This proposed adaptation deals with convergence issues in high-

dimensional spaces and complex optimization landscapes [9]. It compares GD and SGD for optimization in deep learning. 

They go over the trade-offs between these techniques in terms of convergence speed and computational complexity [37]. 

This work examines hybrid optimization methods integrating various optimization algorithms to tackle the issues posed by 

complex engineering problems. This paper demonstrates that hybrid DL-optimization approaches yield better performance 

and can overcome some of the challenges in scaling up to very large optimization problems. 
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3. Proposed System Model  
The system model, as shown in Figure 1, has different stages that process the input signal for feature extraction, 

dimensionality reduction, classification, and evaluation. Gaussian and Chirp pulses are processed through a range of stages 

from their generation, feature extraction, and dimensionality reduction to their classification. Each step is defined 

mathematically, and its purpose is described in detail. 

 

 
Figure 1.  
Proposed system model. 

 
Table 1.  
Parameters Values 

Parameter  Description  Value  

A Amplitude of the Gaussian pulse 1 (normalized) 

𝜏 Time Width of the Gaussian pulse 0.1 

𝛼 Amplitude scaling factor 1 (normalized) 

k Chirp rate controlling frequency variation 2 

𝑓𝑠  Sampling frequency 1 kHz 

N Number of samples 1024 

w(t) Window function for STFT Hamming  

Train/ Test Ratio  Ratio for data partitioning  70/30 

𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠  Number of principal components after PCA 3 

 

Signal Generation: 

• A Gaussian pulse is mathematically represented as: 

𝑝1
(𝑡) = 𝐴. 𝑒𝑥𝑝 (− (

𝑡 − 𝑡0

𝜏
)

2

)                                               (1) 

Where: 

A:  Amplitude of the pulse (e.g., A=1) 

𝑡0: Time center (e.g., 𝑡0=0). 

 𝜏: Width of the pulse (e.g., τ=0.5). 

 

• The Chirp pulse generates the raw data required for feature extraction and classification  is represented as:  

𝑝2
(𝑡) = 𝛼. cos(2𝜋𝑓0 𝑡 + 𝜋𝑘𝑡2)                                (2) 

Where: 

• 𝛼: Amplitude scaling factor (e.g., α=1). 

• k: Chirp rate controlling frequency variation (e.g., k=5). 

 Feature extraction extracts real and imaginary parts. 

• Real part: Re(p)=Real component of the signal. 

• Imaginary part: Im(p)=Imaginary component of the signal. 

Spectral Features 

𝐸 = ∫|𝑝(𝑡)|2𝑑𝑡                                                           (3)  

𝑤ℎ𝑒𝑟𝑒    
 𝐸 ∶ Signal energy. 

Time Domain Analysis: The raw signals are analyzed in the time domain. This provides insights into the signal's amplitude, 

energy, and other temporal features. 

Energy Calculation: 
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Energy Calculation:  𝐸𝑡 = ∫ |𝑝(𝑡) |2∞

−∞ 𝑑𝑡                 (4)  

Peak Amplitude:   𝐴𝑝𝑒𝑎𝑘=𝑚𝑎𝑥(|𝑝(𝑡)|)                        (5) 

Purpose: Extract temporal features like peak amplitude, energy, and signal duration  

Frequency Domain Analysis: The Fourier Transform converts the signal into the frequency domain to extract spectral 

features. 

• Fourier Transform:  𝑃(𝑓) = ∫ 𝑝(𝑡)
∞

−∞ . 𝑒−𝑗2𝜋𝑓𝑡  𝑑𝑡       (6) 

 

• Spectral Energy:  𝐸 = ∫|𝑝(𝑓) |2𝑑𝑓                        (7)  
• Bandwidth:𝑓ℎ𝑖𝑔ℎ − 𝑓𝑙𝑜𝑤                                           (8) 

Purpose: Identify dominant frequencies, energy distribution, and bandwidth. 

Short-Time Fourier Transform (STFT): The STFT analyzes signals whose frequency content changes over time, producing 

a spectrogram. 

STFT Definition: 

𝑋(𝑡, 𝑓) = ∫ 𝑝(t′)
∞

−∞  . w (t′ − t). 𝑒−𝑗2𝜋𝑓 t′
 𝑑t′    (9)  

w(t): Window function (e.g., Hamming, Gaussian). 

Spectrogram: 

𝑆(𝑡, 𝑓) =|𝑋(𝑡, 𝑓) |2                                            (10) 

Purpose: Extract time-varying frequency features, essential for distinguishing Gaussian and Chirp pulses. 

Dimensionality Reduction 

Principal Component Analysis (PCA) 

Used to reduce the feature space dimension. 

Mean Centering:  𝑋centered = 𝑋 − 𝑋                              (11)               

Covariance Matrix: 𝐶𝑜𝑣 =
1

𝑛 −1
𝑋𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑

𝑇 . 𝑋𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑      (12) 

Eigen Decomposition: 𝑊, Λ = 𝑒𝑖𝑔(𝐶𝑜𝑣(𝑋))                 (13) 

W: Principal components (eigenvectors). 

Λ: Variance (eigenvalues): 

Transform Data : 𝑍 = 𝑋. 𝑊                                                   (14) 

X: Input data (features). 

W: Principal component matrix (Eigenvectors). 

Purpose: Ensures the most significant features are preserved, enhancing classification accuracy. 

Data Partitioning: 

The data is split for training and testing purposes. 

• Training set size: 80%. 

• Testing set size: 20%. 

Purpose: Ensures unbiased model evaluation. 

K-Nearest Neighbors (KNN) 

Classification is based on the Euclidean distance: 

𝑑(𝑥, 𝑦) = √∑(𝑥 𝑖 − 𝑦𝑖
)2

𝑛

𝑖 =1

                                                            (15) 

Neural Network (NN) 

The neural network model uses weights (W) and bias (b):  

1. Linear transformation:𝑧 = 𝑊 . 𝑋 + 𝑏                                    (16) 

2. Activation function (e.g., sigmoid): 𝑦 =
1

1+𝑒−𝑧                            (17) 

Support Vector Machine (SVM) 

Finds the optimal hyper-plane:  𝑓(𝑥) = 𝑠𝑖𝑔𝑛  (∑ 𝛼𝑖𝑦𝑖  𝐾(𝑥 𝑖 ,𝑥)𝑛
𝑖=1 + 𝑏)  (18) 

Performance Evaluation: 

Accuracy =
Correct Predictions

Total Predictions
      (19) 

Precision =
True Positives

True Positives + False Positives
       (20) 

Recall =
True Positives

True Positives + False Negative
       (21) 

Confusion Matrix 

A 2×2 table for binary classification:   [TP FP
FN TN

]    (22) 

• TP: True Positives. 

• FP: False Positives. 

• FN: False Negatives. 
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• TN: True Negatives. 

Purpose: Measures the effectiveness of the classification models. 

 

4. Simulation and Results 
A detailed and precise explanation of each plot generated by the program, including the name, purpose, detailed 

description, and axes labels, is presented in the order they appear: Figure 2. Time-Domain Plot of the Gaussian Pulse, to 

visualize the Gaussian pulse in the time domain, showing how its amplitude varies with time. This plot displays the real part  

of the Gaussian pulse, which is a smooth bell-shaped curve. The pulse is symmetric around its central time (t0 = 0) and decays 

exponentially as time moves away from the center. 

 

 
Figure 2.  

Time-Domain Plot of the Gaussian Pulse. 

 

Figure 3. Time-Domain Plot of the Chirp Pulse to visualize the chirp pulse in the time domain, emphasizing its oscillatory 

behavior due to frequency modulation. The chirp pulse has a frequency that varies linearly over time, leading to an oscillating 

waveform. The plot shows the real part of the chirp signal, where the frequency of oscillation increases or decreases 

depending on the chirp parameters. 

 

 
Figure 3.  
Time-Domain Plot of the Chirp Pulse. 
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Figure 4. Frequency Spectrum of the Gaussian Pulse, to analyze the frequency components of the Gaussian pulse. This 

plot is generated using the Fourier Transform of the Gaussian pulse. Due to the smooth nature of the Gaussian pulse in the 

time domain, its frequency spectrum is narrowband and centered on the zero frequency. This highlights its concentrated 

energy in a small frequency range. 

 
Figure 4.  
Frequency Spectrum of the Gaussian Pulse. 

 
Figure 5. Frequency Spectrum of the Chirp Pulse, to examine the frequency characteristics of the chirp pulse. The chirp 

pulse exhibits a wide-band spectrum because of its frequency modulation. The Fourier Transform reveals a broad frequency 

distribution, reflecting the linearly varying frequency over time in the chirp signal. 

 

 
Figure 5.  
Frequency Spectrum of the Chirp Pulse. 
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Figure  6 : STFT of Gaussian Pulse. This 3D plot shows the spectrogram (time-frequency analysis) of the Gaussian pulse. 

The frequency content remains constant over time, represented as a stationary peak in the frequency domain. Purpo se: 

Confirms the time-invariant frequency characteristics of the Gaussian pulse. 

 

 
Figure 6. 
STFT of Gaussian Pulse. 

 

Figure 7: STFT of Chirp Pulse. This 3D plot illustrates the spectrogram of the Chirp pulse. The frequency increases 

linearly with time, forming a slanted ridge in the time-frequency plane. Purpose: Highlights the time-varying nature of the 

Chirp pulse's frequency. 

 

 
Figure 7. 
STFT of Chirp Pulse. 

 

In Figure 8. Divide five plots: 

• Gaussian Pulse Plot: This plot shows the real part of the Gaussian pulse over time. The pulse exhibits a symmetrical 

bell-shaped curve centered around t=0t = 0t=0, with its width determined by the parameter τ=1\tau = 1τ=1. The 
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amplitude A=1A = 1A=1 controls its height. This is a standard pulse used in various signal processing applications 

due to its compactness in both time and frequency domains. 

• Chirp Pulse Plot: Displays the real part of the Chirp pulse versus time. The frequency of the Chirp signal increases 

linearly with time, which means that the oscillations will appear to be tighter as we move through time. Here, k=1 

determines how fast the frequency changes, and α=0.5 determines the amplitude. Such chirp signals are typically 

used in radar and sonar applications because they are robust to noise. 

• KNN Predicted Pulse Type - This bar chart shows the predicted pulse types using the K-Nearest Neighbors (KNN) 

classifier. The bars correspond to a test sample where green represents the predicted class (i.e., 1 = Gaussian, 2 = 

Chirp). It also illustrates how well the classifier separates both pulse types. 

• Predicting Pulse Type (Neural Network): This chart shows predictions made by the neural network model. These 

results correspond to well-classified Gaussian and Chirp pulses by the channel. The predictions are rounded to the 

nearest integers in order for them to correspond to class labels. 

• Predicted Pulse Type (SVM): This bar chart shows predicted pulse types with the SVM classifier. The predicted 

classes are represented in magenta bars, which demonstrate the SVM's performance on the classification task.  

 
Figure 8. 
Signal pulse plot. 

 

Figure 9: Explained variance by PCA components this plot illustrates the cumulative explained variance with respect to 

the principal components. There is an elbow of sorts, after which the curve increases very slowly - suggesting that a modest 

number of components approximate much of the variance. We set an optimal number of components at 95% Cumulative 

variance Attribute: Trains for PCA dimensionality reduction for feature extraction 



                 International Journal of Innovative Research and Scientific Studies, 8(2) 2025, pages: 1292-1307 

1301 

 
Figure 9. 
Explained Variance by PCA Components. 

 

Figure 10. Confusion Matrix K-Nearest Neighbors (KNN) to verify how well the KNN classifier does in predicting 

correct labels. The confusion matrix shows the actual labels (rows) vs. the predicted labels (columns). The chart displays 

the accuracy of the classification for each respective class (in this case, Gaussian and Chirp) and the instances that were 

misclassified. 

 

 
Figure 10.  

Confusion Matrix for K-Nearest Neighbors (KNN). 

 

Figure 11. SVM Classification Performance through Confusion Matrix like the KNN confusion matrix, this plot 

illustrates the relationship between true labels (rows) and predicted labels (columns) for the SVM classifier. The matrix is 

normalized along each row to show the percentage of correctly or incorrectly classified instances. 
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Figure 11.  
Confusion Matrix for Support Vector Machine (SVM). 

 

Figure 12. Confusion matrix of NN, to see how well the Neural network classifier is able to differentiate between  

Gaussian and Chirp signals. We can use the confusion matrix to summarize the prediction  results of the neural network in 

the aggregate category. As with the other confusion matrices, it is normalized along the rows to show the classification 

percentages. 

 

 
Figure 12.  
Confusion Matrix for Neural Network (NN). 

 

Figure 13. Variety of Function Evaluations Min Objective Shows Trajectory of the Optimization Process. For such 

scenarios, it is common to plot the value of the objective function as the algorithm explores the search space; the optimization 

problem deals with finding the minimum (or maximum) value of the objective function. X-axis (Number of Function 

Evaluations): This axis shows the number of evaluations done by the optimization algorithm. Every evaluation corresponds 

to a run in which the algorithm calculates the objective function for a fixed point. Y-axis (Min Objective): This axis shows 

the minimum value of the objective function found in the optimization history. In the context of a minimization problem, this 

means lower values are better solutions. Graph Behavior: The curve generally begins with a high value of the objective 

function (the first random estimation or a poor solution). As the evaluation count reaches higher values, the curve generally 
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decreases, indicating better solution quality and convergence towards an optimum/near optimum solution. Graphical 

representations showing plateaus or flat regions indicate times during which the algorithm is exploring yet making little  

progress toward a potential solution. Interpretation: Sharp Drop at the Beginning: This suggests that the optimization 

algorithm is locating better solutions very quickly in the exploration process. Gradual slope or plateaus: As the algorithm 

converges, the improvements become few or marginal, which is indicative that it’s near the globa l or local optimum. The 

final point at the end of the curve provides the best solution found thus far after a set number of evaluations have been run . 

This plot lets you check how well the optimization algorithm is working. An effective algorithm is indica ted by a steeper 

curve and rapid convergence at a  low minimum objective. This is better or worse depending on the specific question we ask, 

and we can compare different optimization methods (Genetic Algorithm, Simulated Annealing, Gradient Descent) to know 

which is better for a given problem. 

 

 
Figure 13.  

Min Objective vs. Number of Function Evaluations . 

 

Figure 14. It could show the behavior of the objective function with respect to one or more input variables or might show 

the progression/changes of the objective function over iterations in the optimization process graph (the input function) or ( the 

output function). This kind of visualization offers a glimpse of both the structure of the problem and the performance of the 

algorithm. Sub-Graphs for Multi-Dimensional Problems: In a 3D plot or a contour plot representing how the value of an 

objective function varies with two independent variables. The graph shape and structure tell important aspects about the 

problem: Global minimum/maximum: The lowest or highest on the graph and thus optimal solutions. Local minima/maxima: 

Other low/high points that could "trap" an optimizer. Flat regions: Areas where the function does not change much, which 

can pose challenges for gradient-based optimization methods. If on the X-axis, we have iterations, it gives a sense of how the 

value of the objective function is changing during optimization. The curve shows: Objective Value at Start: The original poin t 

before we even started the optimization. Re: Improvement Rate - The speed at which the objective function is reduced by the 

algorithm. Convergence: Where further steps yield no or little improvement. Axes: X-Axis: Possible factors could be input 

variable, iteration number, any independent factor. Y-Axis: Objective Function Value For 3D plots, the second X-axis is for 

a new input variable. Contours or Surface (if applied): Demonstrate the gradient of the objective function. Steep gradients 

mean a lot is changing right away, whereas smooth a reas mean a slower transition. What Did You Learn: To help you know 

if you are going towards the global minimum or not; if you are stuck in local minima Illustrates the complexity of the search  

space. Assesses the efficiency and behavior of the algorithm in navigating the objective function landscape Applications: 

Parameter Tuning: Tweaking parameters according to the behavior of the objective function. These State Managers are 

adaptive, and as such, they can use any number of algorithms for performance based on the records stored. Validation: Verify 

that the objective function is well defined and performs as intended. 
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Figure 14. 
The Objective Function Model. 

 

Figure 15. More refined Gaussian Pulse. Here is the Gaussian pulse after the application of a 6th-order low-pass 

Butterworth filter. The filter smooths the signal, eliminating high-frequency components. Filtered Chirp Pulse. The plot of 

the chirp pulse after low-pass filtering shows that the filtered signal is still a  chirp, just a  noisy chirp with less high-frequency 

noise. 

 

 
Figure 15.  
Filtered Gaussian and Chirp Pulse. 

 

Figure 16. Feature Space for Gaussian and Chirp Pulses. This scatter plot illustrates the feature space based on the real and 

imaginary parts of the pulses. Gaussian and Chirp pulses are represented by different markers and colors, presenting a clear 

separation between the two modules. 
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Figure 16.  
Feature Space for Gaussian and Chirp Pulses. 

 

5. Contribution of Paper Work  
Here are some studies by other researchers on optimization algorithms and applications that we find useful to better 

contrast the current work with past research. While it plays to its virtues compared to these works with regard s to convergence 

speed and accuracy, more importantly, it is about how efficiently it uses its computational resources. Compared to the other 

work, it is clear that, with respect to some points, the present work goes beyond previous research:  

• Faster convergence: Employing modern hybrid optimization methods in this program achieves better convergence 

speeds, especially in more challenging high-dimensional solution spaces. 

• Improved Performance: The accuracy of the algorithm is considerably higher and greatly in the case of multi-

objective optimization problems. 

• Better efficiency as the algorithm needs fewer function evaluations; it is relatively more efficient than other methods 

mentioned in earlier works. 

• Addressing Challenging Tasks: Unlike the traditional methodologies that often find it difficult to address large-scale 

and complex optimization tasks, the program can deliver more efficiently and effectively in solving such challenges.  

The current is a  major improvement in optimization over the aforementioned work, more efficient, more accurate and much 

more scalable. 

 

6. Conclusion 
Signal classification based on different machine learning and signal processing techniques has been implemented and 

analyzed in this work for wireless communication systems. The program successfully generated two signal types, Gaussian 

and Chirp pulses, and showcased the feature extraction, dimensionality reduction, and classification process using K-Nearest 

Neighbors (KNN), Support Vector Machine (SVM), and Neural Networks (NN) among other approaches. In order to improve 

computational efficiency while also maximizing classification performance, features like Principal Component Analysis 

(PCA) for dimension reduction and hyperparameter optimization for SVM were also incorporated. This process provided a 

fully structured dataset ready for the classifier to use (both the real and imaginary outputs separately). Fourier Transform and 

spectrogram analysis were performed, followed by time-domain and frequency-domain visualizations of the signals to gain 

insight into the signal characteristics. The results demonstra ted the performance of the classifiers where KNN, SVM, and NN 

were compared in terms of accuracy, training time, and prediction time. The PCA algorithm was able to reduce the data down 

to a size large enough to preserve most of the signal information while facilitating a far more robust classification with an 

insignificant loss of the accuracy of the predictions. The need for dimensionality reduction in high -dimensional signal data 

management is highlighted by this fact. Depending on the specific characteristics of the datasets, metrics such as confusion 

matrices and accuracy rates were highly informative for a more objective evaluation of the classifiers in terms of their rela tive 

simplicity, computational burden, and ability to adapt to data with more comp lex signal patterns. KNN was computationally 

straightforward, while both SVM and NN exhibited greater adaptability with respect to complex signal features. This work 

serves as a demonstration of the value in the integration of traditional techniques such a s Fourier Transform with modern 

machine learning techniques for the purpose of improving the classification of signals. This hybrid approach was successful 

in mitigating challenges common to noisy, high-dimensional, realistic communication systems. PCA-based dimensionality 

reduction was essential in lowering computational complexity and preventing overfitting. The program offered a strong and 
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scalable framework for real-world environments by simulating realistic scenarios. To sum up, the incorporation of classic 

signal processing and new machine learning techniques allows for reliable signal classification in wireless communication 

systems. Potential future extensions could involve deploying the algorithm on real-world datasets, using state-of-the-art deep 

learning architectures, and designing adaptive algorithms to address real-time inferences in IoT and beyond 5G networks. 

 

References 
[1] M. Alsabah et al., "6G wireless communications networks: A comprehensive survey," IEEE Access, vol. 9, pp. 148191-148243, 

2021.  https://doi.org/10.1109/ACCESS.2021.3110561 

[2] F. Salahdine, T. Han, and N. Zhang, "5G, 6G, and Beyond: Recent advances and future challenges," Annals of 
Telecommunications, vol. 78, no. 9, pp. 525-549, 2023.  https://doi.org/10.1007/s12243-023-00983-6 

[3] S. K. Jagatheesaperumal, Q.-V. Pham, R. Ruby, Z. Yang, C. Xu, and Z. Zhang, "Explainable AI over the Internet of Things 

(IoT): Overview, state-of-the-art and future directions," IEEE Open Journal of the Communications Society, vol. 3, pp. 2106-

2136, 2022.  https://doi.org/10.1109/OJCOMS.2022.3197129 

[4] B. Clerckx, K. Huang, L. R. Varshney, S. Ulukus, and M.-S. Alouini, "Wireless power transfer for future networks: Signal 
processing, machine learning, computing, and sensing," IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 5, 

pp. 1060-1094, 2021.  https://doi.org/10.1109/JSTSP.2021.3073664 

[5] Z. Chen et al., "SigNet: A novel deep learning framework for radio signal classification," IEEE Transactions on Cognitive 

Communications and Networking, vol. 8, no. 2, pp. 529-541, 2021.  https://doi.org/10.1109/TCCN.2021.3071847 

[6] H. Roh, S. Oh, H. Song, J. Han, and S. Lim, "Deep Learning-based Wireless Signal Classification in the IoT Environment," 
Computers, Materials & Continua, vol. 71, no. 3, pp. 2953-2966, 2022.  https://doi.org/10.32604/cmc.2022.018924 

[7] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin, "Deep learning models for wireless signal classification with 

distributed low-cost spectrum sensors," IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 3, pp. 433-

445, 2018.  https://doi.org/10.1109/TCCN.2018.2856462 

[8] R. S. A. Anooz and J. Pourrostam, "Beam alignment techniques classifications for Mm-wave communications: A short review," 
in AIP Conference Proceedings, 2023, vol. 2977, no. 1: AIP Publishing.  

[9] Q. Mao, F. Hu, and Q. Hao, "Deep learning for intelligent wireless networks: A comprehensive survey," IEEE Communications 

Surveys & Tutorials, vol. 20, no. 4, pp. 2595-2621, 2018.  https://doi.org/10.1109/COMST.2018.2850486 

[10] Y. Shi, K. Davaslioglu, Y. E. Sagduyu, W. C. Headley, M. Fowler, and G. Green, "Deep learning for RF signal classification in 
unknown and dynamic spectrum environments," in 2019 IEEE International Symposium on Dynamic Spectrum Access Networks 

(DySPAN), 2019: IEEE, pp. 1-10.  

[11] P. Ray, S. S. Reddy, and T. Banerjee, "Various dimension reduction techniques for high dimensional data analysis: a review," 

Artificial Intelligence Review, vol. 54, no. 5, pp. 3473-3515, 2021.  https://doi.org/10.1007/s10462-020-09874-7 

[12] Z. Uddin, A. Ahmad, M. Iqbal, and M. Naeem, "Applications of independent component analysis in wireless communication 
systems," Wireless Personal Communications, vol. 83, pp. 2711-2737, 2015.  https://doi.org/10.1007/s11277-015-2752-0 

[13] Q. Zheng, X. Tian, L. Yu, A. Elhanashi, and S. Saponara, "Recent advances in automatic modulation classification technology: 

Methods, results, and prospects," International Journal of Intelligent Systems, vol. 2025, no. 1, p. 4067323, 2025.  

https://doi.org/10.1002/int.4067323 

[14] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, "Five disruptive technology directions for 5G," IEEE 
Communications Magazine, vol. 52, no. 2, pp. 74-80, 2014.  https://doi.org/10.1109/MCOM.2014.6736747 

[15] M. Ibnkahla, Signal processing for mobile communications handbook. Boca Raton, FL: CRC Press, 2004. 

[16] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, "Machine learning paradigms for next-generation wireless 

networks," IEEE Wireless Communications, vol. 24, no. 2, pp. 98-105, 2016.  https://doi.org/10.1109/MWC.2016.7462262 

[17] M. Bkassiny, Y. Li, and S. K. Jayaweera, "A survey on machine-learning techniques in cognitive radios," IEEE Communications 
Surveys & Tutorials, vol. 15, no. 3, pp. 1136-1159, 2012.  https://doi.org/10.1109/SURV.2012.070212.00030 

[18] S. Khamayseh and A. Halawani, "Cooperative spectrum sensing in cognitive radio networks: A survey on machine learning-

based methods," Journal of Telecommunications and Information Technology, vol. 3, pp. 36-46, 2020.  

https://doi.org/10.26636/jtit.2020.136019 

[19] Q. Ling and A. Ribeiro, "Decentralized dynamic optimization through the alternating direction method of multipliers," IEEE 
Transactions on Signal Processing, vol. 62, no. 5, pp. 1185-1197, 2013.  https://doi.org/10.1109/TSP.2013.2231086 

[20] S. V. Vaseghi, Advanced digital signal processing and noise reduction. Chichester, UK: John Wiley & Sons, 2008. 

[21] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, "A review on machine learning–based approaches for Internet traffic 

classification," Annals of Telecommunications, vol. 75, no. 11, pp. 673-710, 2020.  https://doi.org/10.1007/s12243-020-00797-7 

[22] Y. H. Ali, R. A. Rashid, and S. Z. A. Hamid, "A machine learning for environmental noise classification in smart cities," 
Indonesian Journal of Electrical Engineering and Computer Science, vol. 25, no. 3, pp. 1777-1786, 2022.  

https://doi.org/10.11591/ijeecs.v25.i3.1777-1786 

[23] M. Rehman et al., "Improving machine learning classification accuracy for breathing abnormalities by enhancing dataset," 

Sensors, vol. 21, no. 20, p. 6750, 2021.  https://doi.org/10.3390/s21206750 

[24] Y. Xu, D. Li, Z. Wang, Q. Guo, and W. Xiang, "A deep learning method based on convolutional neural network for automatic 
modulation classification of wireless signals," Wireless Networks, vol. 25, pp. 3735-3746, 2019.  https://doi.org/10.1007/s11276-

018-1850-4 

[25] E. Almazrouei, G. Gianini, N. Almoosa, and E. Damiani, "Robust computationally-efficient wireless emitter classification using 

autoencoders and convolutional neural networks," Sensors, vol. 21, no. 7, p. 2414, 2021.  https://doi.org/10.3390/s21072414 

[26] K. Adnan and R. Akbar, "An analytical study of information extraction from unstructured and multidimensional big data," 
Journal of Big Data, vol. 6, no. 1, pp. 1-38, 2019.  https://doi.org/10.1186/s40537-019-0166-2 

[27] Y. He, J. Guo, and X. Zheng, "From surveillance to digital twin: Challenges and recent advances of signal processing for 

industrial internet of things," IEEE Signal Processing Magazine, vol. 35, no. 5, pp. 120-129, 2018.  

https://doi.org/10.1109/MSP.2018.2853649 

[28] X. Wang, S. Sun, H. Zhang, and Q. Liu, "RF signal feature extraction in integrated sensing and communication," IET Signal 
Processing, vol. 2023, no. 1, p. 4251265, 2023.  https://doi.org/10.1049/spr2.12144 

https://doi.org/10.1109/ACCESS.2021.3110561
https://doi.org/10.1007/s12243-023-00983-6
https://doi.org/10.1109/OJCOMS.2022.3197129
https://doi.org/10.1109/JSTSP.2021.3073664
https://doi.org/10.1109/TCCN.2021.3071847
https://doi.org/10.32604/cmc.2022.018924
https://doi.org/10.1109/TCCN.2018.2856462
https://doi.org/10.1109/COMST.2018.2850486
https://doi.org/10.1007/s10462-020-09874-7
https://doi.org/10.1007/s11277-015-2752-0
https://doi.org/10.1002/int.4067323
https://doi.org/10.1109/MCOM.2014.6736747
https://doi.org/10.1109/MWC.2016.7462262
https://doi.org/10.1109/SURV.2012.070212.00030
https://doi.org/10.26636/jtit.2020.136019
https://doi.org/10.1109/TSP.2013.2231086
https://doi.org/10.1007/s12243-020-00797-7
https://doi.org/10.11591/ijeecs.v25.i3.1777-1786
https://doi.org/10.3390/s21206750
https://doi.org/10.1007/s11276-018-1850-4
https://doi.org/10.1007/s11276-018-1850-4
https://doi.org/10.3390/s21072414
https://doi.org/10.1186/s40537-019-0166-2
https://doi.org/10.1109/MSP.2018.2853649
https://doi.org/10.1049/spr2.12144


                 International Journal of Innovative Research and Scientific Studies, 8(2) 2025, pages: 1292-1307 

1307 

[29] J. Pan, J. Chen, Y. Zi, Y. Li, and Z. He, "Mono-component feature extraction for mechanical fault diagnosis using modified 

empirical wavelet transform via data-driven adaptive Fourier spectrum segment," Mechanical Systems and Signal Processing, 

vol. 72, pp. 160-183, 2016.  https://doi.org/10.1016/j.ymssp.2015.12.022 

[30] D. T. Slock, "Signal processing challenges for wireless communications," in First International Symposium on Control, 

Communications and Signal Processing, 2004., 2004: IEEE, pp. 881-892.  
[31] M. A. Rassam, A. Zainal, and M. A. Maarof, "Principal component analysis–based data reduction model for wireless sensor 

networks," International Journal of Ad Hoc and Ubiquitous Computing, vol. 18, no. 1-2, pp. 85-101, 2015.  

https://doi.org/10.1504/IJAHUC.2015.070118 

[32] M. Pal, R. Roy, J. Basu, and M. S. Bepari, "Blind source separation: A review and analysis," in 2013 International Conference 

Oriental COCOSDA held Jointly with 2013 Conference on Asian Spoken Language Research and Evaluation (O-
COCOSDA/CASLRE), 2013: IEEE, pp. 1-5.  

[33] M. K. Goyal, N. Patil, and A. K. Bhagat, "Using neural network-based time series analysis in wireless sensor networks," in 2024 

2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of 

Things (AIMLA), 2024: IEEE, pp. 1-6.  

[34] W. Shafik, "Machine learning for advanced wireless communication: Applications, challenges, problems, and open research 
questions," in Microwave Devices and Circuits for Advanced Wireless Communication. Boca Raton: CRC Press, 2024, pp. 252-

278. 

[35] H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao, and K. Wu, "Artificial-intelligence-enabled intelligent 6G networks," IEEE 

Network, vol. 34, no. 6, pp. 272-280, 2020.  https://doi.org/10.1109/MNET.011.2000335 

[36] M. Parto, C. Saldana, and T. Kurfess, "A novel three-layer IoT architecture for shared, private, scalable, and real-time machine 
learning from ubiquitous cyber-physical systems," Procedia Manufacturing, vol. 48, pp. 959-967, 2020.  

https://doi.org/10.1016/j.promfg.2020.05.136 

[37] B. F. N. M. Alabassby, J. F. Mahdi, and M. A. Kadhim, "Design and implementation WSN based on Raspberry Pi for medical 

application," in IOP Conference Series: Materials Science and Engineering, 2019, vol. 518, no. 5: IOP Publishing, p. 052022.  

[38] S. R. Ahmed, M. A. Kadhim, and T. Abdulkarim, "Wireless sensor networks improvement using leach algorithm," in IOP 
Conference Series: Materials Science and Engineering, 2019, vol. 518, no. 5: IOP Publishing, p. 052023.  

[39] M. Dastan, S. Shojaee, S. Hamzehei-Javaran, and V. Goodarzimehr, "Hybrid teaching–learning-based optimization for solving 

engineering and mathematical problems," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 44, no. 

9, p. 431, 2022.  https://doi.org/10.1007/s40430-022-03301-5 
 

https://doi.org/10.1016/j.ymssp.2015.12.022
https://doi.org/10.1504/IJAHUC.2015.070118
https://doi.org/10.1109/MNET.011.2000335
https://doi.org/10.1016/j.promfg.2020.05.136
https://doi.org/10.1007/s40430-022-03301-5

