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Abstract 

 A new concept, D-entropy, is introduced to define the changes in the internal energy of systems moving in non-uniform 

external force fields. D-entropy is defined solely in terms of the system's dynamic parameters, specifically as the ratio of the 

change in internal energy to its total internal energy. It arises from the equation of motion for structured bodies, which 

accounts for the work done by external forces that not only alter the body's motion but also modify its internal state. The 

uniqueness of D-entropy lies in its applicability to both mechanics and thermodynamics, enabling the analysis of evolutionary 

processes within the framework of physical laws. Kinetic energy and D-entropy are identified as key parameters in the 

evolution of systems. 
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1. Introduction 

Motion and fundamental interactions are integral properties of matter. Evolution, however, should also be considered 

one of these properties. Although evolution encompasses motion and interactions, it is not limited to these aspects; it also 

involves the processes of birth, development, and decay of complex systems. While there are well-developed theories for 

studying the dynamics and interactions of material objects, the same cannot be said for evolution. As I. Prigogine stated, 

today we have a physics that describes "what exists," but there is no "physics of becoming" – or, as we will refer to it, 

evolutionary physics [1]. 

In evolutionary physics, the primary task is to describe the processes of emergence, development, and decay of systems 

within the framework of fundamental physical laws. In other words, the scope of evolutionary physics is defined by the 

problems that can be addressed using these laws. One of its main objectives is the study of the Universe, which cannot be 
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fully understood without accounting for the evolutionary processes associated with the motion of objects in inhomogeneous 

external force fields. 

There are several challenges on the way to creating the physics of evolution [2, 3]. The principal obstacles – without 

overcoming which its development is impossible – are that modern physics is highly fragmented, whereas a unified approach 

is required to describe evolution. Moreover, these fragments are insufficiently interconnected. Today, physics can be broadly 

divided into two main areas. 

In the first area, we include disciplines focused on studying the dynamics and interactions of material objects, all based 

on the fundamental laws of physics. The dynamics of bodies is primarily studied using Newton’s laws, often without 

accounting for the role of their internal structures in motion [4-6]. The formalisms in this field are typically constructed for 

systems under the assumption of holonomic constraints, a condition that precludes the study of dissipative processes – 

processes essential for the emergence of attractors and, consequently, evolution [7]. 

The nature of matter is primarily studied through quantum mechanics [8]. In many respects, quantum mechanics also 

relies on the principles of classical mechanics. Both quantum and classical mechanics are linear and do not account for 

dissipative processes. Moreover, quantum mechanics encounters issues related to the principle of causality [9-12]. In the first 

section, kinetic energy and momentum serve as the main parameters. 

The second section addresses the behavior of the internal state of bodies in response to changes in external conditions. 

In this context, relatively large, stationary, closed systems are typically used as models of bodies, representing statistical 

ensembles of equilibrium subsystems. As examples of such subsystems, sets of potentially interacting material points (MP) 

may be considered. We refer to these subsystems as structured bodies (SB). 

Studies of the internal states of bodies are conducted within the frameworks of thermodynamics, statistical physics, and 

kinetics, relying on empirical and probabilistic laws [13, 14]. One qualitatively new characteristic of these internal states – 

absent in the first section – is entropy. In thermodynamics, entropy represents the portion of energy required to maintain a 

particular state of the system, while internal energy corresponds to the total energy of the system’s constituents moving 

relative to its center of inertia (CI). The justification for entropy is grounded in statistical laws; for stationary systems, it is 

defined as the logarithm of the statistical weights of the macroscopic states of the subsystems of a statistical ensemble [13]. 

Thus, the primary parameters characterizing the internal states of bodies are internal energy and entropy. 

As we can see, physics can be divided into two sections. The first section focuses on the dynamic characteristics of 

bodies without considering the influence of their internal structure, while the second section examines the behavior of the 

internal states of bodies independently of their dynamics. This division arises from the distinct research methods employed 

in each area. To describe a body's dynamics, the equations and formalisms of classical mechanics are used. However, when 

studying the structure of bodies – where the number of independent variables is determined by the enormous number of atoms 

in a system – a complete description based solely on classical mechanics is practically impossible [13]. This limitation led to 

the development of statistical physics, which enables the study of internal states using the laws of statistics. The feasibility 

of independently describing a body's dynamics and its internal states stems from the linear nature of physical laws, whereas 

the relationship between a body's dynamics and its internal states is inherently nonlinear. 

Evolution processes are determined by both the dynamics of bodies and the changes in their internal states. Therefore, 

the study of evolution must integrate these two domains. Given the requirement for the unity of physics and adherence to the 

principle of causality, this integration must be based on the fundamental laws of physics. In other words, the statistical 

methods used for the micro-description of systems should derive from deterministic physical laws. However, before these 

domains can be successfully combined, it is necessary to resolve the contradictions between them, which stem from the 

limitations inherent in their respective theories [2]. 

The primary contradiction lies in the reversibility of classical mechanics versus the irreversibility of thermodynamic 

processes. In classical mechanics, reversibility arises from the assumption of holonomic constraints in its formalisms [4-6, 

15] a condition that precludes the description of dissipative processes. To address this contradiction, attempts have been made 

to develop a dynamic interpretation of entropy. For instance, one approach involved utilizing positive Lyapunov exponents, 

which characterize the degree of mixing in systems [7]. However, this mechanism for irreversibility requires the presence of 

arbitrarily small external fluctuations – thus, statistical regularities are invoked regardless. 

The limitations of the second section primarily arise from the requirement that systems remain near equilibrium and from 

the neglect of the role that a system’s dynamics play in altering its internal state. Furthermore, a major obstacle to unification 

is the inconsistency between the statistical methods and the deterministic approaches used to describe systems. Together, 

these limitations prevent the study of evolution solely within the framework of conventional physical laws. 

Here, we consider a relatively new approach to overcoming these challenges, which opens up the possibility of 

constructing a physics of evolution. This approach is based on accounting for the role of the internal structure of bodies in 

their dynamics [16]. Such an accounting has been successfully implemented through the equation of motion for (SB). This 

equation is derived from the invariance of the total energy of an SB, thereby eliminating the need for the holonomicity 

condition and the assumption of potential collective forces [17]. It takes into account not only the work done by external 

forces in producing motion, as in classical mechanics, but also the work that changes the internal state of the SB. 

To quantify the transformation of kinetic energy into internal energy, we introduce the concept of D-entropy. Defined in 

terms of the system’s dynamic parameters, D-entropy is expressed as the ratio of the change in internal energy to its total 

value [16]. In this way, D-entropy characterizes evolutionary processes and provides a means to unify the two sections of 

physics. 

Below, we will discuss the essence of D-entropy, its role in physics, and its relationship to existing concepts of entropy. 

To this end, we will briefly review works addressing the challenges associated with entropy in physics. We will demonstrate 
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how the equation of motion for SB is derived – taking into account the interplay between the dynamics of bodies and their 

internal states – and examine how D-entropy emerges from this equation, resolving certain issues present in traditional 

thermodynamic definitions of entropy. 

It has been 160 years since Clausius introduced the concept of entropy, which quantifies the portion of the work done by 

external forces on a gas that is converted into heat. He established that entropy can only increase [9]. 

In his attempts to construct an atomic theory of gases based on classical mechanics, Boltzmann laid the foundation for 

statistical physics by defining the macrostates of a system probabilistically in terms of its microstates. Boltzmann’s statistical 

mechanics not only provided a justification for thermodynamics but also served as compelling evidence for the atomic nature 

of matter [18]. He proposed a statistical definition of entropy [13]. 

To date, numerous definitions of entropy have been proposed for systems near equilibrium [19]. The most influential 

definitions are those by Gibbs and Boltzmann [20]. Gibbs entropy is defined for a macroscopic classical system in terms of 

a probability distribution function over the phase space of an ensemble. In contrast, Boltzmann entropy is based on the 

quantization of microstates in phase space and is defined for an individual system [13]. Most authors agree that Boltzmann’s 

definition is the most general [21]. 

Entropy possesses the same fundamental generality in physics as concepts such as energy, momentum, and angular 

momentum [22]. Yet, despite its widespread use across various scientific disciplines, there is still no consensus on the true 

physical essence of entropy [23]. Some argue that the statistical concept of entropy lacks a sufficiently clear definition that 

reflects its inherent physical nature [24] and there are even claims that entropy is not a physical quantity at all [19]. This 

controversy is often attributed to the incompatibility between the probabilistic laws of statistical physics, which underpin the 

definition of entropy, and the deterministic laws of physics. According to some, despite numerous attempts to explain its 

physical meaning, “its physical meaning remains shrouded in the deepest of mysteries” [25]. There are also works suggesting 

that entropy is nothing more than a mathematical invention, illogically employed to explain the physics of collective 

phenomena [26]. Furthermore, some studies conclude that the second law of thermodynamics cannot be derived statistically 

from first principles [27, 28]. These conclusions are supported by the observation that statistical explanations of the second 

law violate the principle of causality, which is essential for constructing a consistent physical theory [29]. 

Additional analyses of quantum systems have led to the assertion that the arrow of time is a fundamental feature intrinsic 

to the evolution of systems, both large and small [30]. During the early development of quantum mechanics, it was proposed 

that randomness is a fundamental aspect of the theory – a view supported by Suvorov [31] and Bohr [32]. Einstein, however, 

famously objected, arguing that “God does not play dice” and that the observed randomness merely reflects the 

incompleteness of quantum mechanics [9, 10]. Many issues remain concerning the foundations of statistical mechanics, its 

connection to thermodynamics, and the very concept of entropy. Some works even suggest that, in order to resolve the 

problems of defining entropy and explaining irreversibility, these phenomena should be incorporated directly into the laws 

of microscopic physics [33]. Much of the ongoing debate surrounding entropy stems from disagreements over the various 

definitions and proposed applications of the concept [34, 35]. 

The greatest difficulties arise when attempting to apply the concept of entropy to nonequilibrium systems, which include 

nearly all complex natural objects. Although some progress has been made in extending the concept of entropy to systems 

slightly removed from equilibrium [36] this work is crucial for developing a physics of evolution, since evolutionary 

processes are inherently nonlinear and occur exclusively in nonequilibrium systems. A comprehensive overview of these 

studies can be obtained from reviews on the development of nonequilibrium thermodynamics, where approaches based on 

statistical theory, information theory, kinetic theory, and numerical modeling are discussed [37]. Notably, debates often center 

on Einstein’s relation [38] which is known to be violated in nonequilibrium systems [39]. 

Furthermore, attempts have been made to introduce the concept of evolutionary entropy for living organisms, defining 

it as a statistical measure that quantifies the number and diversity of metabolic cycles within a population of replicating 

organisms [40]. In such work, the Fundamental Theorem of Evolution is derived to describe the direction of energy 

transformation in biological populations. It is claimed that in open systems, “evolutionary entropy increases when the energy 

source is rare and diverse, and decreases when the energy source is abundant and solitary.” 

In summary, this review suggests that the principal challenges in understanding the physical essence of entropy stem 

from its statistical interpretation. Existing expressions for entropy fail to account for the dependence of changes in internal 

energy on the motion and interactions of bodies. Moreover, the incompatibility between the probabilistic laws that underpin 

thermodynamics and the deterministic laws of physics further exacerbates the contradictions between different branches of 

physics [32]. This underscores the importance of seeking an expression for entropy in terms of the dynamic parameters of 

bodies, grounded in the fundamental laws of physics [7]. 

 

2. D – Entropy of Nonequilibrium Systems 
2.1. Equation of Motion for Structured Bodies 

The evolution of bodies, as determined by their dynamics, can be understood through a complete description of the 

motion of their individual elements, since each element contributes both to the kinetic energy and to the internal energy of 

the system [13]. To account for the interplay between these contributions, it is necessary to derive an equation that governs 

the change in the internal energy of a SB while considering the influence of its motion. 

To obtain such an equation, one must rely on physical principles characteristic of moving systems. These principles 

include: 

1) Physical Equivalence: The same physical laws apply to both the system and its environment. 
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2) Duality of Symmetry: The dynamics of a structured body are governed not only by the symmetries of space, as in 

classical mechanics, but also by the intrinsic symmetries of the system itself. 

3) Nonlinear Interrelation: Evolution is determined by the nonlinear relationship between the system’s dynamics and 

changes in its internal state, a relationship influenced by both macroscopic dynamic parameters of the SB and the microscopic 

parameters governing the movements of its constituent elements [17]. 

Using these principles, an equation of motion for the structured body was derived. This equation follows from the 

condition of invariance of the total energy, defined as the sum of the SB’s kinetic energy and its internal energy. It accoun ts 

for the fact that the work performed by external forces contributes both to changes in the kinetic energy of the SB and to 

alterations in its internal energy. In other words, neither the kinetic energy of the MP nor the internal energy remains invariant 

during evolution, underscoring the impossibility of studying evolution within the framework of only one of the two traditional 

sections of physics [16]. Next, we explain how the equation of motion for a structured body (SB) was derived. 

The equations of motion for SB in classical mechanics are derived from a set of formalisms originally constructed based 

on Newton’s equations of motion for material points (MP). These formalisms assume that the constraints are holonomic and 

that all collective forces are conservative [4, 5]. However, these assumptions preclude the description of evolution because 

they do not account for dissipative processes. Consequently, it became necessary to derive an equation of motion for SB that 

eliminates these restrictions. 

This was achieved by formulating the equation of motion for SB from the condition of conservation of its total energy – 

expressed as the sum of its kinetic energy and internal energy. In contrast to SB, the total energy of a material point, which 

lacks internal structure, coincides with its kinetic energy. Newton’s equation of motion for MP can be derived by 

differentiating their kinetic energy with respect to time [5]. According to this equation, the acceleration of an MP is 

proportional to the external force acting on it, with the work of external forces being entirely devoted to accelerating the MP. 

Owing to the additive nature of energy, the equation of motion for an SB can likewise be derived from the invariance of 

its total energy. In practice, it was necessary to represent the total energy of an SB as the sum of its internal energy and its 

kinetic energy [16]. The kinetic energy is determined by the motion of the SB’s CI, its mass, and the speed and potential 

energy of the CI in an external field. In contrast, the internal energy is defined by the velocities of the material points relative 

to the CI and by the energy associated with their mutual interactions. The analytical form of the SB’s kinetic energy follows  

from the symmetries of space and time, while the expression for its internal energy is dictated by the intrinsic symmetries of 

the SB [17]. 

According to the resulting equation of motion for an SB, the acceleration is proportional to the net force acting on its CI. 

However, unlike in the case of a material point, the work done by external forces on an SB contributes not only to its 

translational motion but also to changes in its internal energy. This distinction highlights a significant difference between the 

formulations of the laws of motion for MPs and SBs. 

The representation of the total energy as the sum of the internal energy of SB and the energy of its motion is carried out 

in independent micro- and macrovariables. Microvariables determine the internal dynamics of the elements of SB, while 

macrovariables determine the movement of the SB CI in space. The dual representation of the total energy has made it 

possible to account for the transition of the energy of motion into the internal energy of SB [16]. By differentiating the total 

energy with respect to time, represented through micro- and macrovariables as the sum of the energy of motion and internal 

energy, under the condition of its invariance, we obtain the equation of motion of SB after simple transformations [17]. 
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Equation 1 unlike the equation of motion of a body obtained within the framework of the formalisms of classical 

mechanics, takes into account the relationship between the energy of motion of a body and its internal energy. In its righthand 

side, the first term defines the external potential forces that change the velocity of the CI of SB. The second term is bilinear. 

It depends on micro- and macrovariables and defines the relationship between the energy of motion and the internal energy. 

This term is non-zero only when the condition holds:  that is, when the field of external forces is non-uniform. It characterizes 

the evolution of SB, caused by the relationship between its energy of motion and its internal energy. Its mathematical essence 

is determined by the fact that due to the motion of SB in a non-uniform external field of forces, a change in its state occurs 

as a result of the coupling of vectors from the symmetry groups of space and SB. The first term in the right-hand side is zero 

when the work of the external forces is completely spent on changing the internal energy of SB. If the second term in the 

0 ,d

N N N NM V F V= − −
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right-hand side is zero, then the work of the external forces is completely spent on the motion of SB. That is, Equation 1 

satisfies the correspondence principle. Based on the properties of a vector field in space, we will show that Equation 1 

uniquely characterizes the dynamics of systems. According to the Helmholtz theorem [40], any vector field, if it is unique, 

continuous and vanishes at infinity, can be represented as the sum of the gradient of a scalar function and the curl of a vector, 

whose divergence is zero. Then the expression for the force vector can be represented as follows [41]: 

 

( , , ) ( , , ), ( , , ) 0F gradU x y z rotB x y z divB x y z= + =                 (2) 

 

Equation 2 reflects the fact that for an MP moving in an external force field, there is a change in the modulus and direction 

of the velocity. The change in the mod-ulus of the MP velocity vector is associated with the force that is determined by the 

gradient of the scalar potential U. The change in the direction of the MP velocity vector is determined by the vector potential 

B. That is, the MP participates in two independent motions: in translational motion with acceleration determined by the 

potential -force and rotational motion caused by the force orthogonal to the MP velocity vector. The classical equation of MP 

motion takes into account only the scalar potential. 

The right side of the equation of motion of SB should also be the sum of the gradient and rotor components of the forces. 

Indeed, unlike MP, SB has internal energy. Therefore, the first term of Equation 1 which determines the change in the 

modulus of the velocity of SB, is equal to the sum of the gradient in the scalar potential, acting on the MP. The second term 

is the resulting curl of the vector potential of forces. It determines the changes in the directions of the velocity vectors of the 

MP. 

Thus, due to the fact that Equation 1 is obtained from the total energy SB, presented as the sum of internal energy and 

the energy of motion, it uniquely determines the behavior of the velocity vector SB in space. Obviously, to uniquely determine 

the evolution of SB, Equation 1 should be supplemented with the equations of motion of all elements of the system. Although 

such a solution is very difficult to implement, Equation 1 itself allows us to understand the laws of evolution. 

 

2.2. The Nature of Irreversibility and Bifurcations 

Since classical mechanics excludes irreversibility, its explanation was initially based on probabilistic laws [7]. The basis 

of such an explanation is the exponential instability of Hamiltonian systems according to Lyapunov and the hypothesis of the 

existence of random external fluctuations. That is, this mechanism has a probabilistic nature and cannot be used to construct 

the physics of evolution. Below we will consider the deterministic mechanism of irreversibility that follows from Equation 

1. We will show that, according to Equation 1 the establishment of equilibrium in SB ensembles is due to the transition of 

the energy of relative SB movements into their internal energy. We will do this based on the mechanism of formation of the 

flow of internal energies of the SB ensemble [42]. 

Let 
trE be the energy of relative motions of SB. According to Equation 1 part of this energy 

trE is converted into its 

internal energy, where 
trE is determined by the bilinear term of the second order of smallness of Equation 1. This can be 

written as follows:𝛥𝐸𝑡𝑟 ∼ 𝜒2, where  is a small parameter, for example, the perturbation of the internal energy. First, 

consider the case 
int/trE E <<1, when the violation of the equilibrium of SB can be neglected. In this case, the quantity 

trE is equivalent to the increment of the thermal energy of SB. Irreversibility takes place here, since, by virtue of the law 

of conservation of momentum, the reverse transformation of the thermal energy of SB into the energy of its motion is 

impossible. 

 

 
Figure 1.  
Graphical presentation of Equation 2. 
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Let us consider the second case, when the interaction forces SB or their gradients are large enough. In this case, SB will 

not be in equilibrium, and they can be represented as a set of equilibrium subsystems moving relative to each other. Then, to 

change the internal energy of the subsystems as a result of their interactions, we can write:
tr tr h

insE E E =  +  , where 

tr

insE is the energy of relative motions and 
hE is the increment of the internal energies of the subsystems .That is,

tr h

insE E   . But energy 
hE cannot be converted into the energy of motion of the subsystems. Therefore, we will proceed 

from the fact that only
tr

insE . Let us denote the reverse flow of internal energy as SB as
tr

retE . According to Equation 1 the 

value 
tr

retE is determined by a bilinear function of micro- and macrovariables of the second order of smallness. And since, 

2~trE  we obtain that 
4~tr

retE  . Consequently, the balance of energies of subsystems is determined by the 

condition: 

 

                     (3) 

 

Here are ,  the constants defined by equation (1). That is, the increase in internal energy SB 0tr

decH E=   . Figure 

1 shows the graph
tr

decE . For values: 0  , where 0 are the roots of Equation 8 irreversibility takes place. For SB 

with N > >1 we have 0tr

decE  . For the systems to be stationary, the equality must be satisfied: 0tr

decE = . Thus, according 

to the equation of motion (1), irreversibility conditioned by positive flow of energy of the system’s motion into its internal 

energy. 

An example demonstrating microscopic natures of irreversibility, is bifurcation (Figure 2). 

 

 
Figure 2.  

Microscopic nature of bifurcation. 

 

The dynamics at the bifurcation point are determined by the movements of the system elements (the sphere and the hill). 

In the micro description, the symmetries of the sphere and the hill are not absolute or “pure”, as is defined mathematically in 

the macro description. This can be considered as the domain of existence or admissibility of the corresponding type of 

symmetry. In this case, this domain of existence of symmetries is determined by the micro variables when the admissibility 

of the macro description is violated (see Figure 2). Therefore, here we have an example of the need to use a micro description 

due to the violation of the validity of the macro description at the bifurcation point [43]. Thus, within the framework of the 

micro description, bifurcation is a deterministic process. In accordance with the described mechanism, the “ideality of 

symmetries” is an approximation. It will be violated during the interaction between the hierarchical levels of infinitely 

divisible matter, up to its field state [16]. The physical essence of bifurcation is that in it the macrodynamics of the body 

depends on microdynamics its elements. Such a mechanism of symmetry breaking corresponds to the principle of causality. 

If symmetry breaking were random in nature and not a consequence of limitations of description methods, then constructing 

an evolutionary picture of the world within the framework of the laws of physics would be impossible. 

 

2.3. The nature of D-entropy 

The processes of heat absorption for bodies at rest are characterized by entropy [13, 14]. However, the example of the 

growth of the entropy of a body when it rolls down an inclined surface with friction due to gravity demonstrates the need to 

take into account the dependence of entropy on the relative velocity of the interacting systems. To eliminate this shortcoming, 

it is necessary to have a concept of entropy for moving bodies in a non-uniform field of forces. This concept of entropy is 

2 4tr

decH E  =  = −
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introduced based on Equation 1. We will call it D-entropy and define it as the ratio of the increment of internal energy to its 

total value due to the energy of motion [44]. 

                            (4) 

 

where d

NS is the D-entropy, which determines the transformation of the energy of motion into internal energy. The prefix 

“D” means that the entropy is determined in a deterministic manner. The D-entropy can also be written as follows: 

                         (5) 

 

Let us emphasize that in the general case, D-entropy may also contain a share of work that is associated with the 

expansion of the body under external pressure. However, this work can be identified based on the laws of thermodynamics. 

Thus, D-entropy, firstly, is determined by the transformation of the energy of motion into internal energy; secondly, it is 

determined; thirdly, for a sufficiently large system, it obeys the second law of thermodynamics. And, most importantly, it 

determines evolution. According to Equation 1 using D-entropy, the work of external forces can be written as follows: 

                          (6) 

 

Let us explain Equation 6 using the example of a body rolling with friction on an inclined surface. The first term in (6) 

determines the work of gravity to move the body. The second term determines the change in internal energy. It coincides 

with the change in thermodynamic potential [9]: 

                         (7) 

 

It should be borne in mind that dU it does not take into account the work of external forces caused by the body’s motion. 

That is, D-entropy through dynamic parameters determines the total work of external forces that goes to change the internal 

state of a moving system. This is the physical essence of the concept of D-entropy and its important difference from the 

thermodynamic concept of entropy. 

Equation 7 is applicable only to equilibrium systems. However, if external forces are significant, then the equilibrium is 

violated. In this case, the system is an ensemble of SBs moving relative to each other. The change in the entropy of each SB 

is due to the absorption of the energies of their relative movements. A clear example of such a mechanism is the interaction 

of galaxies in the Universe. Since the pressure there can be considered zero, then in the equilibrium approximation in the 

right-hand side of Equation 7 only the first term will remain, which in this case coincides with Equation 4. 

For non-stationary external forces, the internal energy will change even without the body’s motion. In this case, in the 

absence of pressure, the D-entropy coincides with the thermodynamic potential. Thus, the measure of change in internal 

energy is associated with the D-entropy. It follows that with the invariance of the total energy; the state of systems is 

determined by changes in the energy of motion and the D-entropy. Consequently, the evolution of systems is determined by 

two physical factors. These are the energy of motion and the D-entropy. The energy of motion determines the dynamic 

properties of bodies and is a measure of “Order”. The D-entropy characterizes the change in the measure of “Chaos” of the 

motion of elements of bodies due to the energy of “Order” [45]. In this case, the measure of “Chaos “and the measure of 

“Order “change under the condition of conservation of the total energy of the system. 

 Internal energy is determined by the chaotic motion of the body’s elements, for example, thermal energy. For an 

equilibrium system consisting of a sufficiently large number of elements, the sum of the MP impulses in any selected 

subsystem is zero. The complete equilibrium of the system corresponds to the state of maximum "chaos" with maximum D-

entropy. In general, D-entropy characterizes evolution, as it determines the change in the internal macrostate of the system 

through the set of microstates of its elements. This is what determines the physical meaning of D-entropy. 

Numerical calculations have shown that when a sufficiently small system moves in non-uniform fields of external forces, 

its internal energy can either increase or decrease. That is, D –entropy for small systems can be negative. But already at N1 

>100, the internal energy only increases. That is:
100 0dS  . At N2 >103,  the value of the internal energy increment reaches 

an asymptotic value, which determines the range of applicability of the thermodynamic description of the system [46]. Of 

course, these numbers depend on the parameters of the problem. That is, the occurrence of irreversibility is different for each 

substance and for different conditions. But in any case, it occurs according to Equation 2 with a sufficient number of particles 

in the system. D-entropy eliminates the contradictions between classical mechanics and thermodynamics. 

Thus, Equation 1 allows us to introduce a concept that corresponds to thermodynamic entropy. This opens up the 

possibility of unifying sections of physics. 

 

2.4. D-Entropy for Open Nonequilibrium Dynamic Systems 

The evolution of natural objects is determined by dissipative processes. They occur during the interaction of bodies with 

the external environment as a result of the exchange of energy, momentum and matter with it. Therefore, to describe 

evolutionary processes, it is necessary to take into account openness. Dissipation is possible only due to the structure of 

bodies. This means that if the world has evolved, then matter is infinitely divisible and represents an infinite hierarchy of 

systems. That is, any arbitrarily small isolated part of a body is a system. From the condition of infinite divisibility of matter, 

it follows that it is impossible for bodies with zero internal energy to exist. Thus, if bodies have all these properties and have 

arisen as a result of evolution, then they belong to open non-equilibrium dynamic systems (ONDS), and matter represents 

an infinite hierarchy of ONDS [8, 10, 37].  

int int/d

N N NS E E = 

int~ /d tr

decS E E 

0 int d

N N NdA F dR E S= − − 

dU TdS PdV= −
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In the simplest case, the ONDS is SB. Let us call this the first step of the ONDS hierarchical ladder. The second step of 

the ONDS is the statistical ensemble composed of SB moving relative to each other. This approximation of the mother model 

corresponds to the ONDS model used in statistical physics [8]. Let us consider how D-entropy is determined for such a 

system. 

Each SB of a nonequilibrium system moves in a non-uniform field of forces created by all other SB and external forces. 

The total energy of a closed ensemble of SB is invariant, and the change in D – entropy is determined by the sum of the 

entropy increments of each SB due to their energies of relative motion. The D-entropy of such an ensemble has the form 

[17]: 

 

 int int

1 1
/ [ ] /

La Nd L

N N N L ks k LL k s
S E E N F v dt E

= =
 =  =  

                  (8) 

EL- internal energy L – subsystems; L

ksF - the force acting on – k particles of the subsystem from 

particles of other subsystems; s - is an external particle in relation to L- subsystem, interacting with its k- particles; vk- 

the velocity i -th particle; NL– the number of particles in L- subsystems; L =1,2,3…; a – the number of subsystems in a 

nonequilibrium system. 

Calculations of the dependence of fluctuations of internal energy on the d

NS number of MP in systems moving in 

inhomogeneous fields, performed on the basis of the equation of motion (1), showed that it obeys the law [46]: 

𝛿𝐸𝑡𝑟 ∼ 1/√𝑁   (9) 

 

The same law is known in statistical physics [13]. This means that condition (9) is determined by deterministic laws of 

physics. This result indicates that the scope of application of statistical laws can be determined on the basis of the laws of 

physics. 

The entropy for the second stage ONDS can be obtained either using Equation 1 or using the distribution function

( , , )p pf f r p t= , which follows from the extended Liouville equation [47]: 

 

1
/ / { ( / ) ( / )}

N

p p i p i i p i pi
df dt f t v f r p f p f 

=
=   +   +   = −           (10) 

Here 1, 2,3...i N= is the number SB, p

iF are the forces acting on the i -th SB, 
ip - SB impulse 1

/
N p

i ii
F p

=
=   . 

Equation 10 is obtained using Equation 1. It differs from the canonical Liouville equation in that the phase volume SB, 

determined by its energy of motion, is not conserved. According to Equation 1 the magnitude of the change in the distribution 

function is proportional to the gradients of the forces. For a closed nonequilibrium ensemble, the value  decreases with 

decreasing energy of relative motions SB due to its transformation into the internal energy SB. The contribution to the change 

in the function ( , , )p pf f r p t=  only non-potential forces contribute. The solution to Equation 10 is as follows: 

 

                (11) 

 

Community ( , , )p pf f r p t=  is that this function is obtained taking into account the work of dissipative forces. That 

is, this function also follows from the equation of motion (1). 

Using the distribution function (10), we can obtain the entropy for systems close to equilibrium: 

( ln )B

p pS f f dpdq= − [8]. From Equation 10 it follows that if 0 = , then we have: / 0BdS dt = . Consequently, BS

has a maximum when the SB ensembles have no relative velocities. 

According to the principle of dualism of symmetry, the energy at all hierarchical levels of matter is equal to the sum of 

the energy of motion, which is a measure of “Order”, and the internal energy, which is a measure of “Chaos”. Therefore, 

the change in D –entropy at each hierarchical level consists of increments of the energies of “Order” and the energies of 

“Chaos” of this level as a result of the impact on it from the external hierarchical level. That is, these increments are carried 

out due to the energy of external hierarchical levels. Let us consider the relationship between the energy of motion and D-

entropy for the hierarchical levels of ONDS. 

 

2.5. The Relationship Between the Energy of Motion And D-Entropy of Hierarchical Links of Matter 

We will proceed from the condition that any nonequilibrium ONDS can be represented by a set of subsystems moving 

relative to each other. The justification for this statement can be found in statistical physics [13, 14]. Let external forces begin 

to act on the ONDS at a certain moment. In the general case, this will lead to a change in the energy of motion and internal 

energies of the ONDS elements at the first hierarchical level of the ONDS. If the external forces are large enough and the 

characteristic scales of their inhomogeneities are small enough, then a change in the energy of motion of the first level will 

lead to a change in the energy of the second hierarchical level of the ONDS, and so on. Thus, we obtain:  

expo

p pf f dt= 
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in in in in

0 1 1 1 2 2 1; ; ;m m m m

N N N N NE E E E E E E E E E E− =  +  =  +  =  +  = 
 (12) 

 

                          (13) 

 

Here 
0E is the work of external energy, i = 1,2,3… N, m is the index that determines the energy of motion, in is the 

index corresponding to the internal energy. That is, the energies of the corresponding hierarchical levels of the ONDS consist 

of the sum of the energies of the movement of elements and their internal energies of a given level. 

Equations 12, 13 represent chains of increments of the energy of motion and D -entropy of the subsystems of each 

hierarchical level due to the energy of motion of the external level. We will call this the principle of relativity of energy and 

D-entropy for the steps of the hierarchical ladder of the ONDS. From these equations it follows that for the ONDS the 

inequality always holds:
0

Nd d

ii
S S , where 

0

dS is the D-entropy of the system that has reached the equilibrium state. 

That is, there is a decrease in the energy of motion of the elements of a given level due to its transformation into their internal 

energy, which is equivalent to dissipation - dis

iE . As a result, the change in the energy of motion at each level of the 

ONDS hierarchy can be represented as follows: 

 

                       (14) 

 

Since nonequilibrium systems are characterized by dissipative processes, the ability of such a system to be in a stationary 

state is ensured by the work of external forces, compensating for dissipative processes at hierarchical levels of matter. The 

amount of energy required to compensate for the energy of motion lost as a result of dissipation at a given level, let's call D- 

negentropy:  

 

                     (15) 

 

If the value of D- negentropy at each hierarchical level of the ONDS compensates for dissipation, then this will ensure 

the stationarity of the ONDS state, determined by the condition:  

 

            (16) 

 

That is, due to 

ND

iW , the ONDS can be in a stationary nonequilibrium state. The following conclusion follows: for 

nonequilibrium systems placed in a non-uniform external field, their entropy evolves not to an equilibrium state, but to a 

corresponding stationary nonequilibrium state determined by the external field of forces. This scenario for establishing 

stationary ONDS does not take into account all factors. For example, in the case of a solar radiation flux to the Earth, the 

external impact on the atmosphere with a sufficient spectrum width of this flux can directly affect several of its hierarchical 

levels. In fact, this mechanism determines the emergence of life. It consists of a decrease in the entropy of the system due to 

an increase in the entropy of the non-uniform field of external forces [48, 49]. 

When a stationary nonequilibrium state of the system is established, the positive influx of energy and entropy is 

compensated by Planck radiation. But in any case, the nature of the external influence is subject to the principle of relativity 

of the energy of motion and D -entropy, and the stationarity of the ONDS is ensured by condition (16). It follows from this 

principle that the Boltzmann entropy, determined by the logarithm of the number of microstates, does not uniquely determine 

the state of a nonequilibrium system that has the energy of relative motion of subsystems. 

According to Equation 1 the influence of level “m” on level “m -1” is determined by the second order of smallness, but 

then its influence on level “m -2” will be of the fourth degree of smallness. Therefore, to describe evolution with sufficient 

accuracy, one can use the equation of motion (1) for each two adjacent hierarchical levels of matter. That is, there is no need 

to construct a complete equation of motion for all hierarchical levels, which significantly simplifies the task of describing the 

evolution of matter. 

Important note. The infinite divisibility of matter means that the work of external forces, although decreasing 

exponentially with the growth of the level number, can go to change the state of all hierarchical levels, up to the field state 

of matter. This allows us to propose a corresponding scenario of irreversibility, due to the fact that the process of excitation 

of all hierarchical levels will require infinite time, which is equivalent to accepting the condition of inelastic collisions of the 

elements of the level [50]. The question arises, can such a scenario explain irreversibility? But the principle of Occam's razor 

allows us to choose a simpler mechanism of irreversibility, considered above. Although this scenario also requires study. 

The physical meaning of D-entropy implies the essence of the probabilistic definition of entropy and the scope of its 

limitations. This allows us to take a more optimistic view of John von Neumann's statement: "...nobody knows what entropy 

is..." [51]. 

The fact that D-entropy characterizes the evolution of interacting bodies makes it indispensable for describing the 

evolution of matter, especially for an expanding Universe, when the role of the relative motions of objects in changing their 

internal states cannot be neglected. 

in in/d

i i iS E E = 

m m dis

i i iE E E =  −

/ND dis in

i i iW E E =  

0m m dis ND

i i i iE E E W =  − + =
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3. Discussion 
In this work, a new concept was introduced – D-entropy, which allows one to describe evolutionary processes in systems 

moving in non-uniform fields of external forces. Unlike classical entropy, based on statistical methods and applicable only 

to equilibrium systems, D-entropy deterministically describes changes in internal energy caused by the system's motion. This 

approach allows one to combine the dynamic and thermodynamic aspects of evolution, which is a significant step toward 

creating a unified physics of evolution. 

Classical entropy is defined as a measure of the disorder of a system and is used to analyze stationary states. However, 

its application to moving systems and systems in nonequilibrium is problematic. D-entropy, on the contrary, characterizes 

the transformation of the energy of motion into internal energy, which is especially important for moving systems in non-

uniform fields. This allows us to overcome the limitations of classical thermodynamics and describe processes that do not fit 

into the framework of the equilibrium approach. 

The main difference of D-entropy is its dependence on dynamic parameters, which makes it applicable to a wide class 

of systems, from macroscopic to microscopic. Numerical calculations have shown that for sufficiently small systems, D-

entropy can take negative values, which reflects the possibility of reducing the internal energy of the system due to external 

factors. With an increase in the number of particles in the system, D-entropy becomes positive, which corresponds to the 

second law of thermodynamics. 

One of the most significant features of the proposed approach is the explanation of the irreversibility of processes. In 

classical mechanics, reversibility is due to the use of holonomic conditions for constraints and the exclusion of dissipative 

processes. In our study, it was shown that irreversibility arises due to the transition of the energy of motion into the internal 

energy of the system, which is described by the bilinear term in the equation of motion SB. This approach allows us to explain 

the mechanisms of establishing equilibrium in the system based on deterministic laws, and not only statistical assumptions. 

 The bifurcations considered in this paper also provide insight into the microscopic nature of irreversibility. It is shown 

that when considering the motion of system elements at the level of microstates, bifurcation is a deterministic process caused 

by the relationship between macrodynamics and microdynamics. This contradicts classical ideas about the randomness of 

bifurcations and emphasizes the need to take into account microstructural features when describing the evolution of systems. 

The introduction of D-entropy has eliminated the contradictions between mechanics and thermodynamics that existed 

due to differences in the description of dynamic and internal states of systems. This unification is important for the 

construction of the physics of evolution, where the processes of development, emergence and decay of systems should be 

described within the framework of a single theory. The possibility of determining entropy through the dynamic parameters 

of bodies opens up new ways to study complex nonequilibrium systems, such as the expanding Universe, where the 

interaction of objects and their evolution cannot be described only by the thermodynamic approach. 

Despite the successful introduction of D-entropy, some limitations should be noted. In particular, the application of the 

proposed approach requires taking into account the structural features of the system, which complicates its use for systems 

with an unknown or complex structure. In addition, numerical calculations show that determining the areas of applicability 

of D-entropy for specific systems requires further research, especially in the context of quantum mechanics and systems far 

from equilibrium. 

Future research should be aimed at developing methods for quantitative description of D-entropy in complex natural 

systems, such as the Earth's atmosphere or galaxies. In addition, it is important to study the influence of D-entropy on the 

evolution of open systems, where the exchange of energy and matter with the external environment plays an important role. 

 

4. Conclusions 
 A solution to the problem of obtaining an analytical expression for the entropy of moving bodies is proposed. This 

expression follows from the equation of motion of a system of potentially interacting material points moving in a non-uniform 

field of external forces. The peculiarity of such an equation is that it takes into account the role of the system's structure in 

its dynamics. The equation of motion follows from the condition of invariance of the total energy. Because the total energy 

is represented by the sum of the energy of motion and the internal energy, the equation determines both the work of external 

forces that goes into the motion of the system and the work that changes the internal energy of the system. The value 

characterizing the change in internal energy is called D-entropy. It is defined as the ratio of the change in the internal energy 

of the system to its total value. That is, D-entropy characterizes dissipative evolutionary processes in moving systems. D-

entropy for large systems is always positive, which corresponds to the second law of thermodynamics. D-entropy allows one 

to determine the criteria characterizing the applicability range of statistical definitions of entropy. Its advantage is its 

applicability to both large and small moving systems, for which statistical definitions of entropy are unsuitable. The equation 

of motion and the expression for D-entropy resolve the contradictions between the mechanics of bodies and their 

thermodynamics, which opens up the possibility of constructing the physics of evolution, the task of which includes 

describing the processes of emergence, development, and decay of systems within the framework of the laws of physics. 

 Thus, the introduction of D-entropy into the physics of evolution is an important step toward the creation of a unified 

theory describing both dynamic processes and changes in the internal state of systems. This approach eliminates existing 

contradictions and allows for the description of evolutionary processes in both classical mechanics and thermodynamics. 

This opens up new opportunities for research in the field of evolutionary physics. 
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