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Abstract 

With the high growth of the Internet, the security of networks has stimulated individuals' attention. It is believed that a safe 

system atmosphere is an effective source for the fast and complete expansion of the Internet. Phishing is a vital type of 

cybercrime, which is a mischievous action of tricking consumers into clicking on phishing links, stealing consumer data, and 

eventually utilizing user information to fake log in with linked accounts to take assets. The models of phishing and the 

expertise of recognition are always being upgraded. With the progress and applications of machine learning (ML) technology, 

numerous ML-based solutions for detecting phishing have been developed. Some solutions depend upon the extraction of 

features by rubrics, while others require trusting third-party services, which can affect variability and lead to time-consuming 

issues in the forecasting service. Thus, this article develops a novel Pigeon Inspired Optimizer with a Deep Learning Model 

on Website Phishing Detection and Classification for Secure Web Mining (PIODL-WPDCWM) algorithm. The objective of 

the PIODL-WPDCWM technique lies in securing web mining activities and defending users from phishing attacks on 

websites. Primarily, the presented PIODL-WPDCWM technique involves z-score normalization to ensure that input features 

are standardized to a common scale. For the feature selection procedure, the brown-bear optimization algorithm (BBOA) has 

been employed to classify the most relevant and informative features from the data. Additionally, the self-attention-based 

long short-term memory and auto-encoder (S-LSTM-AE) classifier is deployed for the detection and classification of website 

phishing. Lastly, the pigeon-inspired optimizer (PIO) algorithm can be utilized for the hyperparameter tuning model of the 

S-LSTM-AE method. To certify the higher performance of the PIODL-WPDCWM technique, a wide range of simulation 

studies was conducted, and the attained outcomes demonstrated the improvement of the PIODL-WPDCWM technique over 

other existing models. 
 

 Keywords: Data normalization, Deep learning, Phishing attack, Pigeon-inspired optimizer, Web mining, Website. 

 

DOI: 10.53894/ijirss.v8i2.6100 

Funding: This study received no specific financial support.    

History: Received: 3 March 2025 / Revised: 2 April 2025 / Accepted: 4 April 2025 / Published: 11 April 2025 

Copyright: © 2025 by the authors. This article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
Competing Interests: The authors declare that they have no competing interests. 

Authors’ Contributions: All authors contributed equally to the conception and design of the study. All authors have read and agreed 

to the published version of the manuscript. 

Transparency: The authors confirm   that   the   manuscript   is   an   honest, accurate, and transparent account of the study; that no 

vital features of the study have been omitted; and that any discrepancies from the study as planned have been explained. This study 

followed all ethical practices during writing. 

Publisher: Innovative Research Publishing  

http://www.ijirss.com/
mailto:er.arvee@rediffmail.com
https://creativecommons.org/licenses/by/4.0/


 
 

               International Journal of Innovative Research and Scientific Studies, 8(2) 2025, pages: 3703-3718
 

3704 

1. Introduction 

Phishing websites are semantic threats that aim at the user instead of the computer. They represent a comparatively 

innovative form of Internet crime compared to other types, such as hacking and viruses [1]. The phishing concern is 

challenging because it is extremely simple for attackers to generate convincing replicas of legitimate banking sites that may 

look quite authentic to consumers. The term "phishing" is derived from the phrase "website phishing," which itself is a play 

on the word "fishing" [2]. Phishing is the act of sending an email to a consumer, falsely claiming to be a legitimate business 

establishment, in an attempt to trick or scam the user into submitting confidential data that will be used for identity theft. The 

consequences include data security breaches involving the compromise of private information, and victims may ultimately 

suffer financial losses or other types of harm [3]. Phishing websites present a complicated issue to recognize and analyze; 

consequently, it intertwines social and technical problems, with no known single silver bullet to resolve it Aksu et al. [4]. 

Phishing threats are traditionally initiated by sending an email that appears to come from a reputable firm, requesting victims 

to confirm or update their data by clicking a link within the email. Figure 1 depicts the general structure of website phishing. 

 

 
Figure 1.  

General Structure of Website Phishing. 

 

Though phishers instantly apply multiple methods for creating phishing websites to allure and fool users, all of them 

utilize a group of mutual features to generate phishing websites [5]. This can assist in distinguishing between phishing and 

honest websites depending on the feature extraction from the visited website. Recognizing phishing websites is a difficult 

task that requires significant specialist experience and knowledge. So far, multiple solutions have been advanced and 

presented to address these concerns. Data mining is a field of investigation that can make use of feature extraction from 

websites to discover patterns, along with relationships among others [6]. Data mining tools and models can identify e-banking 

phishing websites in an artificial intelligence (AI) model [7]. Classification and associative models might be extremely 

valuable for forecasting phishing websites. Data mining is the automatic extraction of previously unrealized data from large 

data resources to support actions [8]. The rapid growth of data mining has made it accessible to a broad range of models, 

represented by pattern recognition, statistical fields, databases, and machine learning (ML).  

Currently, communication and information tools are utilized in a way that is extremely dense with data. In these 

conditions, multiple solution approaches for several types of difficulties have been advanced [9]. Deep Learning (DL) and 

Machine Learning (ML) models can be exploited in application expansion for information security. DL and ML models 

might be employed for classification purposes in several fields. Classification can be treated as a process to determine whether 

data belong to one of these categories in the dataset governed by certain rules [10]. Classification is utilized in several areas 

and holds a significant place and importance for information security. 

This article develops a novel Pigeon Inspired Optimizer with a Deep Learning Model on Website Phishing Detection 

and Classification for Secure Web Mining (PIODL-WPDCWM) algorithm. Primarily, the presented PIODL-WPDCWM 
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technique involves z-score normalization to ensure that input features are standardized to a common scale. For the feature 

selection procedure, the brown-bear optimization algorithm (BBOA) has been employed. Additionally, the self-attention-

based long short-term memory and auto-encoder (S-LSTM-AE) classifier is deployed for the detection and classification of 

website phishing. Lastly, the pigeon-inspired optimizer (PIO) algorithm can be exploited for the hyperparameter tuning model 

of the S-LSTM-AE method. To certify the enhanced performance of the PIODL-WPDCWM system, a wide range of 

simulation studies was conducted, and the attained outcomes establish the improvement of the PIODL-WPDCWM technique 

over other existing approaches. 

 

2. Related Works 
Sahingoz et al. [11] project that the growth of a phishing detection method depends on DL, applying 5 diverse models: 

CNN, ANN, BiRNN, RNN, and attention systems. This method is mainly aimed at the rapid classification of web pages 

utilizing URLs. To assess the performance method, a relatively broad labeled URL dataset, including nearly 5 million records, 

was shared and collected. In Kumar et al. [12], a Swarm Intelligence Binary Bat Algorithm (SIBBA) approach was utilized 

for intending the NN that are classified as the system URL websites related to the classification method. The DL-based Adam 

optimizer reaches higher classification precision. Alsubaei et al. [13] projected innovative DL methods, the RNT, embedded 

GRU, and ResNeXt approaches, rigorously advanced for real-world phishing threat recognition. The systematic method 

includes SMOTE for handling data imbalance through primary processing of the data. This discriminative method is capable 

of enhancing the process of feature extraction, while AE and ResNet (EARN) were incorporated with feature engineering. 

Pillai and Sharma [14] presented a hybrid unsupervised recognition method a DL-based anomaly-based web attack 

recognition. While the De-Noising Autoencoder (DAE) encrypted outputs, along with Stacked AE, are incorporated and 

granted to GAN as an input. Thus, to classify the kind of threats, an innovative DBM-Bi LSTM-based classification method 

was presented. In Asiri et al. [15], a method that identifies 3 kinds of phishing threats: regular phishing threats, Browser in 

the Browser (BiTB), and Tiny Uniform Resource Locators (TinyURLs) is intended. This method was divided into 3 

kinds: Docker container, browser extension, and DL model. Initially, a DL method is intended by utilizing Bi-LSTM and 

an attention method for categorizing the URL. Then, an extension of the browser is intended to remove the novel URL from 

the suspected webpage. Afterward, the Docker container unlocks the website and removes every URL from its JavaScript 

and HTML. Alohali et al. [16] implemented an innovative Metaheuristics DL-oriented Phishing Detection (MDLPD-SSE) 

method. Moreover, the LSTM method is employed in this paper to recognize phishing. To end with, the Bald Eagle Search 

(BES) optimizer model is employed to fine-tune the hyper-parameters significant to the LSTM approach. 

Zhu et al. [17] projected that Phishing Detection depends on Hybrid Features (PDHF), an innovative phishing recognition 

method that depends on a combination of automated DL and optimum artificial features. The optimum artificial phishing 

characteristics were attained by extracting redundant characteristics and an enhanced bi-directional searching model. To 

increase the actual period of phishing recognition and deep features are gathered from the URL utilizing a disorderly 

quantized attention mechanism and a 1D character CNN. In Aldakheel et al. [18], an innovative approach for recognizing 

phishing sites with higher precision. This method employs a CNN-based method for accurate classification, which efficiently 

differentiates legal websites from phishing websites. This method projects a single contribution to the phishing recognition 

field by attaining higher precision rates and breaking existing advanced methods. 
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Figure 2.  

Overall Flow of PIODL-WPDCWM algorithm. 

 

3. Materials and Methods 
In this article, we have developed a novel PIODL-WPDCWM algorithm. The objective of the PIODL-WPDCWM 

technique lies in securing web mining activities and defending users from phishing attacks on websites. It encompasses four 

major stages are involved as z-score normalization, BBOA-based feature subset selection, website phishing detection, and 

PIO-based parameter tuning process. Figure 2 represents the entire flow of the PIODL-WPDCWM algorithm. 

 

3.1. Z-score Normalization  

Primarily, the presented PIODL-WPDCWM technique involves z-score normalization to ensure that input features are 

standardized to a common scale. Z-score normalization is an arithmetical model that is employed in order to normalize the 

features of a database, certifying that they have a standard deviation of 1 and a mean of 0 [19]. In the situation of website 

phishing recognition, Z-score normalization is employed for the features mined from websites (like HTML tags, URL length, 

and link features) to eliminate any biases caused by opposing feature measures. This certifies that every feature donates 

similarly to the technique, enhancing the performance of ML techniques. By altering the data into an even measure, Z-score 

normalization aids the technique to unite faster and creates the recognition of phishing websites more precisely. It is chiefly 

valuable when employing intricate methods such as DL or ensemble models. 

 

3.2. BBOA-Based Feature Subset Selection 

For the feature selection process, the BBOA is employed to classify the most related and informative features from the 

data. The initial phases of the BBOA are inspired by the Brown‐bear's sniffing and pedal scent-marking behaviors [20]. 

Different groups of BBs are arbitrarily produced inside an identified land, by all groups are marked by pre-determined pedal 

scent mark counts. This method is mathematically stated as shown: 

𝑃𝑖,𝑗 = 𝑃𝑖,𝑗𝑚𝑖𝑛
+ 𝛾. (𝑃𝑖,𝑗𝑚𝑎𝑥

− 𝑃𝑖,𝑗min
)                                               (1)  

Whereas 𝑃𝑖𝑖  signifies the 𝑗 𝑡ℎ design inside the 𝑖 𝑡ℎ group of BB paths. 𝑃𝑖,𝑗min
and 𝑃𝑖,𝑗𝑚𝑎𝑥

 signify the lower and upper 

limits of the scent marking, correspondingly, and 𝛾 designates randomly generated values in the interval of 0 and 1. 

When the total number of groups inside a land is 𝑛𝑝, and the complete amount of trail marks (for example, decision 

variable counts) in every cluster is 𝑛𝑑, formerly the aggregate group of possible solutions (𝑃) is described as 
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𝑃 =

[
 
 
 
𝑃1,1 𝑃1,2 … 𝑃1,𝑛𝑑

𝑃2,𝑙 𝑃2,2 … 𝑃2,𝑛𝑑

⋮ ⋮ ⋱ ⋮
𝑃𝑛𝑝,𝑙 𝑃𝑛𝑝,2 … 𝑃𝑛𝑝,𝑛𝑑]

 
 
 
                                                          (2) 

Three attributes (i) distinguishing foot actions during the walk, (ii) caution steps, and (iii) turning of the feet into 

impressions at ground level are arithmetically demonstrated to imitate the pedal scent marking behavior. It is mathematically 

represented in Equation 3: 

𝑃𝑖,𝑗,𝑘
𝑛 = 𝑃𝑖,𝑗,𝑘

𝑜 , −(𝜆𝑘 . 𝑐𝑖,𝑗,𝑘, 𝑃𝑖,j,k
𝑜 , )                                                   (3) 

Now, 𝑃𝑖,𝑗,𝑘
𝑛 , characterizes the upgraded 𝑗 𝑡ℎ trail marks of the 𝑖 𝑡ℎ group of BBs in the 𝑘 𝑡ℎ iteration, 𝑃𝑖,𝑗,𝑘

𝑜  signifies the 

previous 𝑗 𝑡ℎ trail marks of the 𝑖 𝑡ℎ cluster of bears inside a similar period. Additionally, 𝑐𝑖,𝑗,𝑘, characterizes numbers 

distributed at random amongst(0, 1), related to the footmark of 𝑖 𝑡ℎ cluster of bears for the 𝑘 𝑡ℎ iterations, and 𝜆𝑘 specifies 

the event feature for the 𝑘 𝑡ℎ iteration, which rises linearly through the iteration counts. The second third of each of the 

iterations is stated in Equation 4: 

𝑃𝑖,𝑗,𝑘
𝑛 = 𝑃𝑖,𝑗,𝑘

𝑜 + 𝐴𝑘. (𝑃𝑗,𝑘
𝑏 − 𝐵𝑘 . 𝑃j,k

𝑤)                                        (4) 

Whereas 𝑃𝑗,𝑘
𝑏  and 𝑃𝑗,𝑘

𝑤  signify the 𝑗 𝑡ℎ top rank and 𝑗 𝑡ℎ lower rank pedal scent marking, correspondingly, detected within 

the 𝑘 𝑡ℎ iterations. 𝐴𝑘 signifies the step aspect within the 𝑘 𝑡ℎ iteration, and 𝐵𝑘 designates the step length in that iteration. 

The fitness function (FF) imitates the accuracy of the classifier and the extent of preferred features. So, the below-mentioned 

FF is applied to assess individual solutions. Its mathematical equation is shown in Equation 5. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 ∗  𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 + (1 − 𝛼) ∗
#𝑆𝐹

#𝐴𝑙𝑙_𝐹
                            (5) 

Here, 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 specifies the classifier error ratio of the chosen features. 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 is proposed as the ratio of 

inappropriate classifications considered that classification counts made, definite as a value between 0 and 1. #𝑆𝐹 refers to 

the number of preferred features and #𝐴𝑙𝑙_𝐹 denotes the total quantity of features. 𝛼 is applied to switch the implication of 

classifier superiority and subset length.  

 

3.3. Website Phishing Detection using S-LSTM-AE 

Additionally, the S-LSTM-AE classifier is deployed for the recognition and classification of website phishing. The AE 

is the unsupervised learning method intended for handling unlabeled data [21]. The important inequality in the gathered data 

is considered as a majority of standard information and a lack of error information, in addition to the need for manual labeling 

by specialists. Using an AE architecture for the task of recognition is particularly suitable. AEs normally contain dual 

modules: an encoder and a decoder. The encoder is directed to map input data to a lower-dimensional latent space model, 

whereas the decoder converts the latent model back to an input region, aiming to rebuild unique information as precisely as 

possible. 

The encoder and decoder procedures are defined below: 

ℎ = 𝑔𝜃1
(𝑥) = 𝜎(𝑊1𝑥 + 𝑏1)                                                (6) 

𝑥̂ = 𝑔𝜃2
(ℎ) = 𝜎(𝑊2ℎ + 𝑏2)                                                (7) 

Now, 𝑊 characterizes the weights, 𝑏 indicates the biases, 𝑥 embodies input data, ℎ and 𝑥̂ refer to the encoding and 

decoding output, respectively; and an activation function has been utilized, by the function of the sigmoid to be utilized in 

this regard.  

𝜎(𝑥) =
1

1 + 𝑒−𝑥
                                                       (8) 

The encoding gets an input 𝑋 and maps it to the representation of a latent area ℎ, whereas the decoding re-mapping ℎ 

gets back to an input area for giving the rebuilt signals. The function of loss is normally described as the mean squared error 

(MSE), while 𝑁 signifies the training sample counts. Network training aims to reduce this MSE. 

 min
1

𝑁
∑ ‖

𝑁

𝑖=1

𝑥 − 𝑥̃‖2
2                                                  (9) 

The trained AE targets for learning the accurate likelihood distribution of input data as precisely as promising. LSTM 

systems are a specified form of recurrent neural networks (RNNs) tailored for predicting and processing time‐series data. 

They deal with the tasks of learning longer sequences, in addition to alleviating problems associated with gradient explosion 

and gradient vanishing. LSTM systems have a novel architecture of cells, which handles the information flow through a 

complicated gating mechanism. Unlike a conventional RNN, LSTM presents a cell state, forget, input, and output gates. This 

gating mechanism is observed as a fully connected (FC) layer. It enables storage of data and upgrades over this gate method, 

especially using the function of Sigmoid in addition to dot product processes. Whereas RNNs only transmit hidden layers 

(HLs), LSTM combines cell states additionally. While 𝑓𝑡, 𝑖𝑡 , and 0𝑡 characterize the forget, input, and output gates 

correspondingly. 𝑇𝑎𝑛ℎ and 𝜎 refer to the activation function of hyperbolic tangent and sigmoid, which maps data to the range 

[1, 1] and [0,1].  𝑊𝑐 ,𝑊𝑓 ,𝑊𝑖 ,𝑊𝑜 characterize the weights related to the cell state, forget, input, and output gates, individually. 

𝑊𝑓 ,𝑊𝑖 , 𝐵𝑓, 𝑏𝑖, 𝑏𝑐 ,  𝑏𝑜 denote biased terms. 𝑊𝑓 ,𝑖𝑋𝑡
 signifies an input at 𝑡he time. ℎ𝑡−1 and ℎ𝑡 symbolize an output at the time 

𝑡 and 𝑡 − 1, correspondingly. 𝒞𝑡 denotes the temporary condition. 𝐶𝑡−1 and 𝐶𝑡 characterize the state at the time 𝑡 and 𝑡 − 1, 

correspondingly. 

Forgetting Gate: It normalizes whether previous longer‐range memory data must be rejected. 
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𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                             (10) 

Input Gate: It defines the sum of data, which can be recovered from the longer‐range memory unit for outputs. 

𝐶𝑡 = tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                                         (11) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                                  (12) 

Output Gate: It controls the sum of data, which is recovered from the longer‐range memory unit for outputs. 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                              (13) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)                                                         (14) 

Longer‐Term Memory Unit: Mainly used to store and process previous data, in addition to filtering and sifting data. 

Short-Term Memory Unit: Intended to keep the current output and send this back into the system. 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡                                            (15) 

The LSTM method inputs successive data into a gate of input that inscribes the information to the longer‐range memory 

unit as needed. The gate of forgetting controls which data must be removed, but the gate of output recovers the basic data 

from the longer‐range memory unit for the output. The Attention mechanism has grown considerably, and it is initially used 

in the visual field. This mechanism aids in removing the main data related to every time window. At last, the 𝑛 length 

sequences 𝑚 output from the encoding is passing over a linear layer to gain the value matrix: 𝑉 = [𝑉1, 𝑉2, ⋯ , 𝑉𝑚], key 

matrix: 𝐾 = [𝐾1,  𝐾2, ⋯ ,  𝐾𝑚], query matrix: 𝑄 = [𝑄1, 𝑄2, ⋯ , 𝑄𝑚]. The computation procedure is exposed below: 

{
𝑄𝑖 = 𝑊𝑞𝑋𝑖

𝐾𝑖 = 𝑊𝑘𝑋𝑖

𝑉𝑖 = 𝑊𝜈𝑋𝑖

                                                              (16) 

 

 
Figure 3.  

Structure of S-LSTM-AE. 

 

Subsequently, the dot-product between the vector of keywords 𝐾𝑖 and the vector of query 𝑄𝑖  for every time it is 

computed, and the dot-product is separated by √𝑑𝑘, while 𝑑𝑘 denotes the size of the keyword vector, and the outcome is 

standardized utilizing 𝑆𝑜𝑓𝑡𝑀𝑎𝑥. The value of attention can be multiplied by the vector value 𝑉𝑖. Figure 3 represents the 

architecture of the S-LSTM-AE model. 
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑀𝑎𝜒 (
𝑄𝐾𝑇

√𝑑𝑘

)𝑉                            (17) 

3.4. Hyperparameter Tuning Process 

Lastly, the PIO algorithm can be exploited for the hyperparameter tuning model of the S-LSTM-AE method. By 

mimicking homing pigeons, we presented the PIO model [22]. Landmarks and magnetic fields are exploited by pigeons to 

detect routes in homing. So, dual operators are presented: the landmark operator and the map and compass operator. 

 

3.5. Map and Compass Operator 

Pigeons may identify the earth's magnetic arena utilizing magnetic objects and might create cognitive maps. They exploit 

the sun’s elevation as a compass to fine-tune their direction of travel, and the reliance on magnetic objects and the sun 

decreases after approaching the target. 

 

3.6. Landmark Operator 

This operator has been applied to mimic the inspiration of landmarks on pigeons during direction finding. For example, 

pigeons address the target, close landmarks are looked for. When the pigeons are aware of landmarks, they fly straight to the 

target. Or else, it follows the pigeon's flight sensible of the landmarks. 

 

3.7. Mathematical Approach 

The assumption that the search space is 𝑛‐dimensioned, the pigeon 𝑖 is mathematically characterized by an 𝑛‐

dimensioned vector 𝑋𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑛). Also, the speed of all pigeons is stated as other 𝑛-dimensioned vectors, 𝑉𝑖 =

(𝑣𝑖,1, 𝑣𝑖,2, … ,  𝑣𝑖,𝑛). The finest global location is characterized by 𝑋𝑔 = (𝑥𝑔,1, 𝑥𝑔,2, … , 𝑥𝑔,𝑛). Formerly, every pigeon upgrades 

the velocity and location based on the succeeding dual Equations. (18) and (19)       

𝑉𝑖(𝑡) = 𝑉𝑖(𝑡 − 1)𝑒−𝑅𝑖 + 𝑟𝑎𝑛𝑑 (𝑋𝑔 − 𝑋𝑗(𝑡 − 1))                 (18) 

𝑋𝑖(𝑡) = 𝑋𝑖(𝑡 − 1) + 𝑉𝑖(𝑡)                                       (19) 

Whereas 𝑡 characterizes the present iteration counts. 𝑅 represents the map and compass feature, in an interval of 0 and 1 

which controls the impact of the current on the present velocities. Finally, 𝑟𝑎𝑛𝑑 refers to a randomly created number 

distributed uniformly in the interval of 0 and 1. Equation 18 upgrades the velocity of the pigeon based on the current velocity 

of the pigeons and the distance between the pigeon’s present location and the globally finest location. The pigeon formerly 

upgrades the location by a novel speed based on Equation 19.  

During this landmark operator, pigeons depend on milestones for navigating. Next, every iteration, the pigeon count is 

reduced by half based on Equation 20. It is far away from the target, unaware of the landmarks, and fails to recognize the 

route, thus, these pigeons are rejected. 𝑋𝑐 characterizes the middle location of the residual pigeon, which helps as a landmark 

and guide for flight. These equations are applied in the landmark operator as shown. 

𝑁𝑝(𝑡) =
𝑁𝑝(𝑡 − 1)

2
                                                       (20) 

𝑋𝑐(𝑡) =
𝛴𝑛=1

𝑁𝑝(𝑡)
𝑋𝑖(𝑡)𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖(𝑡))

𝑁𝑝𝛴𝑛=1

𝑁𝑝(𝑡)
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖(𝑡))

                                        (21) 

𝑋𝑖(𝑡) = 𝑋𝑖(𝑡 − 1) + 𝑟𝑎𝑛𝑑(𝑋𝑐(𝑡) − 𝑋𝑖(𝑡 − 1))                             (22) 

Whereas 𝑁𝑝 refers to population size; fitness signifies the estimation function computing the fitness of all pigeons. 

Equation 21 has been applied to compute the middle value of the residual pigeons, and then all pigeons fly toward a novel 

location based on Equation 22. Formerly, the requisite iteration counts are attained inside the landmark operator. So, the 

operator ends work, and also the model ends. 

The workflow of the method is shown below. 

Stage 1: Initializing the parameter, dimension of the pigeon 𝑁, The map and compass feature 𝑅, and the maximal iteration 

counts 𝑁1, and N2 for the landmark operator. 

Stage 2: Arbitrarily make 𝑁 pigeons, assess every individual, and define the finest pigeon 𝑋𝑔. 

Stage 3: Performing the map and compass factor by upgrading every velocity and location of the pigeons, estimating the 

fitness of each of the pigeons, and establishing the finest pigeon 𝑋𝑔. 

Stage 4: Checking the end criteria for the iteration; when the end criteria of the map and compass factor are encountered, 

go to Stage 5. Or else to Stage 3. 

Stage 5: Performing the landmark operator by upgrading every velocity and location of the pigeons, estimating the fitness 

of each of the pigeons, and establishing the finest pigeon 𝑋𝑔. 

Stage 6: Checking the end criteria for the iteration; when the end criteria of the map and compass factor are encountered, 

stop. Or else, go to Stage 5. 

The PIO model originates an FF to get the amended performance of classification. It refers to a positive number to imply 

a better solution of the candidate solution. Here, the reduction in the classifier rate of error is reflected in FF, which is 

formulated in Equation 23.    

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 
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=
𝑁𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
∗ 100                  (23) 

 

4. Performance Validation 
In this section, the performance study of the PIODL-WPDCWM approach is examined under the PhiUSIIL Phishing 

URL dataset [23, 24]. It contains 100000 samples under two classes, as shown in Table 1. There are 54 no, of features but 

only 36 features are chosen.  

 
Table 1.  

Details of the database. 

Class No. of Instances 

Legitimate 50000 

Phishing 50000 

Total Instances 100000 

 

Figure 4 displays the confusion matrices formed by the PIODL-WPDCWM approach. The outcomes require that the 

PIODL-WPDCWM method has effective detection and identification of all classes properly.  

 

 
Figure 4.  

Correlation matrix of PIODL-WPDCWM model. 

 

Figure 5 establishes the confusion matrices generated by the PIODL-WPDCWM approach under different epochs. The 

results stipulate that the PIODL-WPDCWM system has effective detection and identification of Legitimate and Phishing 

classes exactly.  
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Figure 5.  

Confusion matrices of BADD-SAODFF technique (a-f) Epochs 500-3000. 

 

The Phishing website recognition of the PIODL-WPDCWM model is demonstrated under distinct epochs in Table 2 and 

Figure 6. The table values state that the PIODL-WPDCWM system correctly recognized all the classes. On 500 epochs, the 

PIODL-WPDCWM technique provides an average 𝑎𝑐𝑐𝑢𝑦 of 97.56%, 𝑝𝑟𝑒𝑐𝑛 of 97.56%, 𝑟𝑒𝑐𝑎𝑙  of 97.56%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 97.56%, 

and MCC of 95.12%. Besides, on 1000 epochs, the PIODL-WPDCWM system gets an average 𝑎𝑐𝑐𝑢𝑦 of 97.51%, 𝑝𝑟𝑒𝑐𝑛 of 

97.52%, 𝑟𝑒𝑐𝑎𝑙  of 97.51%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 97.51%, and MCC of 95.03%. Moreover, on 1500 epochs, the PIODL-WPDCWM 

approach attains an average 𝑎𝑐𝑐𝑢𝑦 of 97.66%, 𝑝𝑟𝑒𝑐𝑛 of 97.66%, 𝑟𝑒𝑐𝑎𝑙  of 97.66%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.66%, and MCC of 95.32%. 

Also, on 2500 epochs, the PIODL-WPDCWM model delivers an average 𝑎𝑐𝑐𝑢𝑦 of 97.73%, 𝑝𝑟𝑒𝑐𝑛 of 97.73%, 𝑟𝑒𝑐𝑎𝑙  of 

97.73%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 97.73%, and MCC of 95.46%. At last, on 3000 epochs, the PIODL-WPDCWM approach attains an average 

𝑎𝑐𝑐𝑢𝑦 of 97.68%, 𝑝𝑟𝑒𝑐𝑛 of 97.69%, 𝑟𝑒𝑐𝑎𝑙  of 97.68%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.68%, and MCC of 95.37%. 
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Table 2.  

Phishing website recognition of the PIODL-WPDCWM model under dissimilar epochs. 

Class 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 𝑴𝑪𝑪 

Epoch - 500 

Legitimate 97.48 97.63 97.48 97.56 95.12 

Phishing 97.64 97.48 97.64 97.56 95.12 

Average 97.56 97.56 97.56 97.56 95.12 

Epoch - 1000 

Legitimate 96.74 98.25 96.74 97.49 95.03 

Phishing 98.28 96.79 98.28 97.53 95.03 

Average 97.51 97.52 97.51 97.51 95.03 

Epoch - 1500 

Legitimate 97.49 97.82 97.49 97.66 95.32 

Phishing 97.83 97.50 97.83 97.66 95.32 

Average 97.66 97.66 97.66 97.66 95.32 

Epoch - 2000 

Legitimate 96.77 98.27 96.77 97.51 95.08 

Phishing 98.29 96.82 98.29 97.55 95.08 

Average 97.53 97.54 97.53 97.53 95.08 

Epoch - 2500 

Legitimate 97.26 98.18 97.26 97.72 95.46 

Phishing 98.20 97.28 98.20 97.74 95.46 

Average 97.73 97.73 97.73 97.73 95.46 

Epoch - 3000 

Legitimate 97.14 98.20 97.14 97.67 95.37 

Phishing 98.22 97.17 98.22 97.69 95.37 

Average 97.68 97.69 97.68 97.68 95.37 
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Figure 6.  

Average outcome of PIODL-WPDCWM model (a-f), Epochs 500-3000. 
 

In Figure 7, the training (TRA)  𝑎𝑐𝑐𝑢𝑦 and validation (VAL) 𝑎𝑐𝑐𝑢𝑦 performances of the PIODL-WPDCWM technique 

under epoch 2500 are depicted. The 𝑎𝑐𝑐𝑢𝑦 values are evaluated through a range of 0-25 epochs. The outcome underscored 

that the values of TRA and VAL 𝑎𝑐𝑐𝑢𝑦 shows an increasing trend, indicating the capability of the PIODL-WPDCWM 

algorithm through enhanced performance across numerous repetitions. Furthermore, the TRA and VAL 𝑎𝑐𝑐𝑢𝑦 values remain 

close through the epochs, notifying of the lesser overfitting and displaying the greater result of the PIODL-WPDCWM 

method, which guarantees reliable predictions on unnoticed samples. 
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Figure 7. 

 𝐴𝑐𝑐𝑢𝑦 curve of PIODL-WPDCWM technique under Epoch 2500. 

 

 
Figure 8.  

Loss curve of PIODL-WPDCWM technique at Epoch 2500. 

 

In Figure 8, the TRA loss (TRALOS) and VAL loss (VALLOS) curves of the PIODL-WPDCWM technique under epoch 

2500 are shown. The values of loss are estimated across a range of 0-25 epochs. It is showcased that the values of TRALOS 

and VALLOS represent a diminishing trend, which notified the proficiency of the PIODL-WPDCWM approach in 

corresponding a trade-off between generalized and data fitting.   
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Figure 9.  
PR curve of PIODL-WPDCWM system over Epoch 2500. 

 

In Figure 9, the PR outcome investigation of the PIODL-WPDCWM model under epoch 2500 provides clarification into 

its outcome by scheming Precision against Recall for 2 classes. The outcome illustrates that the PIODL-WPDCWM technique 

constantly achieves higher PR values over distinct class labels, which notified its proficiency to preserve a substantial portion 

of true positive predictions among all the positive predictions while similarly capturing a large proportion of actual positives.  

In Figure 10, the ROC outcome of the PIODL-WPDCWM method under epoch 2500 is examined. The performances 

indicate that the PIODL-WPDCWM technique attains enhanced ROC analysis across each class, which represents substantial 

proficiency in discerning the classes. This consistent tendency of higher ROC curve outcomes through several classes implies 

the skillful outcome of the PIODL-WPDCWM system in predicting classes, which indicates the robust nature of the 

classification method. 

 

 
Figure 10.  

ROC curve of PIODL-WPDCWM technique under Epoch 2500. 
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Table 3 and Figure 11 demonstrate the comparison investigation of the PIODL-WPDCWM system with other systems 

[25-27]. The table outcomes implied that the RNN, LSTM-LSTM, CNN-RNN, RoFBET, ABET, and Ensemble bagging 

approaches have reported the least solutions. In the meantime, DNN+Adam and ForestPA-PWDM systems have gained 

closer solutions. In addition, the PIODL-WPDCWM methodology reported greater performance with maximal 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙 , 
𝑎𝑐𝑐𝑢𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.73%, 97.73%, 97.73%, and 97.73%, correspondingly. 

 
Table 3.  
Comparative analysis of PIODL-WPDCWM model with existing frameworks. 

Framework 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 

RNN Algorithm 91.41 91.98 93.35 91.49 

LSTM-LSTM 92.58 93.24 93.21 92.84 

CNN-RNN 93.83 92.52 93.01 94.77 

RoFBET Model 92.50 92.98 93.12 91.60 

ABET Model 93.11 93.01 94.04 95.38 

Ensemble bagging 92.01 95.72 96.84 96.46 

DNN+Adam 95.81 94.36 95.34 91.36 

ForestPA-PWDM 94.94 93.25 94.76 91.86 

PIODL-WPDCWM 97.73 97.73 97.73 97.73 

 

 
Figure 11.  

Comparative analysis of PIODL-WPDCWM model with existing frameworks. 

 

In Table 4 and Figure 12, the comparison outcomes of the PIODL-WPDCWM model are specified in terms of execution 

time (ET). The experimental outcomes showed that the PIODL-WPDCWM system gets the optimum solution. Based on ET, 

the PIODL-WPDCWM methodology gains a lower ET of 5.27 sec, whereas the RNN, LSTM-LSTM, CNN-RNN, RoFBET, 

ABET, Ensemble bagging, DNN+Adam, and ForestPA-PWDM systems obtain higher ET values of 8.86 sec, 9.05 sec, 11.77 

sec, 11.02 sec, 7.92 sec, 12.79 sec, 10.46 sec, and 11.07 sec, correspondingly. 
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Table 4.  

ET outcome of PIODL-WPDCWM technique with other approaches. 

Framework Execution Time(sec) 

RNN Algorithm 8.86 

LSTM-LSTM 9.25 

CNN-RNN 11.77 

RoFBET Model 11.02 

ABET Model 7.92 

Ensemble bagging 12.79 

DNN+Adam 10.46 

ForestPA-PWDM 11.07 

PIODL-WPDCWM 5.27 

 

 

 
Figure 12.  
ET outcome of PIODL-WPDCWM approach with other systems.  

 

5. Conclusion  
In this article, we have developed a new PIODL-WPDCWM algorithm. The objective of the PIODL-WPDCWM system 

lies in securing web mining activities and defending users from phishing attacks on websites. It encompasses four major 

stages: z-score normalization, BBOA-based feature subset selection, website phishing detection, and the PIO-based 

parameter tuning process. Primarily, the presented PIODL-WPDCWM technique involves z-score normalization to ensure 

that input features are standardized to a common scale. For the feature selection process, the BBOA is employed to classify 

the most relevant and informative features from the data. Additionally, the S-LSTM-AE approach is deployed for the 

detection and classification of website phishing. Lastly, the PIO algorithm can be utilized for the hyperparameter tuning 

model of the S-LSTM-AE method. To certify the enhanced performance of the PIODL-WPDCWM system, a wide range of 

simulation studies has been conducted, and the attained outcomes establish the enhancement of the PIODL-WPDCWM 

technique over other existing models. 

Data Availability Statement: The authors confirm that the data supporting the findings of this study are available within the 

article [23, 24]. 
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