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Abstract 

Solid-state fermentation (SSF) is a process used to produce enzymes and secondary metabolites; however, its low efficiency 

limits its application, as it does not cost-effectively meet market demand. This article proposes modeling the operation and 

determining the optimal parameters of SSF processes through the application of artificial intelligence systems. To this end, 

programming algorithms were designed in MATLAB software to implement an artificial neural network (ANN), a genetic 

algorithm (GA), particle swarm optimization (PSO), and the artificial bee colony (ABC) algorithm. To verify the proposed 

method, the production of proteases used in the cheese industry was modeled and optimized. The results show that the optimal 

process parameters were correctly identified, the modeling precision and accuracy were increased (R² > 0.90), and the process 

resources required can be reduced. These findings suggest that the use of artificial intelligence systems in SSF processes is 

an effective tool to maximize their production. 
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1. Introduction 

The industrial application of SSF processes, driven by market needs such as population growth, product availability, 

associated costs, product quality and other factors, makes it essential to improve their efficiency, reduce costs and increase 

their competitiveness [1]. Typically, in a SSF process using solid substrates to produce enzymes and secondary metabolites 

[2, 3] low efficiency and productivity are present, which limits its application as it does not cost-effectively meet market 
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requirements. Nowadays, several methodologies have been proposed to optimize a SSF process, such as controlling the 

culture conditions (incubation temperature, humidity, aeration, etc.), the appropriate selection of the microorganism and the 

substrate, and the application of experimental design techniques to determine the optimal culture conditions [4-6]. 

Furthermore, SSF can be analyzed and modeled using mathematical, kinetic, and thermodynamic approaches. However, this 

represents a complex task due to the heterogeneous characteristics of the fermentation process [7-9]. Currently, response 

surface methodology (RSM) is the most popular technique for determining optimal parameter values that minimize or 

maximize the response of a fermentation process [10-12]. However, this methodology cannot model nonlinear or very 

complex systems; it can only model one process response at a time, and, as the number of independent variables increases, 

the modeling accuracy decreases [13]. On the other hand, artificial intelligence techniques are systems inspired by diverse 

situations in nature, which allow for improved precision in the analysis, design, and control of processes [14, 15]. In this 

sense, an ANN is a computational model composed of multiple processing units (artificial neurons) inspired by the nervous 

system of living beings and that can be used to model and control processes. Additionally, there are various optimization and 

search techniques, such as GA, which is based on the principles of genetics and natural selection; PSO, which is inspired by 

the social and collective behavior of organisms in a colony; and ABC, which is based on the way bees forage and 

communicate information with each other [16]. In the literature, ANN, GA, PSO and ABC have been used in several 

applications with excellent results, such as finger gesture recognition [17] estimation or forecasting of electrical energy 

production through solar panels installed in a given area [18] intrusion detection to ensure the security, integrity and reliability 

of the Internet of Things [19] design of polymers with high thermal stability at high temperatures, resistance to high electric 

fields and high dielectric strength [20] design and optimization of the geometry of horizontal-axis wind turbine blades [21] 

estimation of medium and long-term energy consumption for planning and taking appropriate measures [22] extraction of 

maximum power from a photovoltaic system by tracking the maximum power point [23] among others. Therefore, this study 

presents the modeling and optimization of SSF processes through the design and implementation of artificial intelligence 

systems, as a basis for manipulating process variables toward optimal parameters that allow for increased efficiency and/or 

productivity. This is because these systems have shown good results in various applications and, consequently, can reduce 

resource use in the fermentation process. To achieve this objective, an ANN was used to model the relationship between the 

independent and dependent variables of the process. In addition, GA, PSO, and ABC were used to determine the optimal 

parameters that maximize the production of the fermentation process. To verify the performance of the artificial intelligence 

systems used, an SSF process was modeled and optimized. In this regard, the optimal parameters for protease production in 

Rhizomucor miehei were determined. In addition, the corresponding programming algorithms were designed in C++ to 

implement the artificial intelligence techniques in software, depending on the system conditions. The structure of the article 

is as follows: Section 2 describes the characteristics of the system (ANN, GA, PSO, and ABC), Section 3 presents the results 

obtained, Section 4 includes the discussion, and the last section presents the conclusions. 

 

2. System Description 
Figure 1 shows a block diagram of an SSF process, modeled with an ANN and optimized using GA, PSO, or ABC. A 

prerequisite for the application of advanced control algorithms is the use of well-characterized process models. This is 

because a mathematical model must represent both the static and dynamic behavior of a process and can be used for the 

design of the different design stages (simulation, controller design, etc.). To model the fermentation process, the first step is 

to define the number of independent and dependent variables, as well as their respective maximum and minimum values. The 

second step is to perform a design of experiments (such as the Box-Behnken design (BBD), central composite design (CCD), 

etc.), which is used to study the effects of the independent variables on the dependent variables. The third step is to design 

the ANN structure, which determines the relationship between the independent and dependent variables to correctly simulate 

and predict process behavior. In addition, the model must be validated using different criteria (e.g., mean square error (MSE), 

coefficient of determination (𝑅²), etc.), which demonstrate the model's accuracy. To optimize the fermentation process, the 

first step is to define the optimization technique (GA, PSO, or ABC), which depends on the complexity of the problem, the 

runtime, the computational resources, among other factors. The second step is to define the variable or variables to be 

optimized. The third step involves combining ANN and the optimization technique to obtain the optimal process parameters.  

 

 
Figure 1.  

Block diagram of the optimization of a fermentation process using artificial intelligence systems. 

 

2.1. Design of the Artificial Neural Network 

A prerequisite for the application of advanced control algorithms is the use of well-adapted process models. In this sense, 

an ANN is a system composed of several layers, which, in turn, are made up of artificial neurons. Figure 2 shows the structure 

of the ANN used to model the SSF process mentioned above. The ANN consists of an input layer (𝐿1) that receives data on 

the independent variables, a first hidden layer (𝐿2) with ten neurons, a second hidden layer (𝐿3) with ten neurons and an 

output layer (𝐿4) with five neurons that provides the responses of the fermentation process. In this case, X1,…,X5 and 

Y1,…,Y5 represent the independent and dependent variables of the process, respectively. 
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Figure 2.  

Structure of the ANN for modeling protease production. 
 

To obtain the relationship between the input and output variables, the synaptic weights (𝑊𝑗𝑖
(𝐿)

) and thresholds (𝜃𝑗) All 

the neurons in the network must be adjusted. To do this, the backpropagation algorithm was used, which uses a set of training 

samples, that is, the values of the input variables and their respective desired outputs. Training samples are obtained through 

an experimental design (obtained offline) and must be presented to the network until the error between the output and desired 

signals is within an acceptable range [24, 25]. The first stage of the backpropagation algorithm consists of propagating the 

value of the input variables layer by layer until the network response is obtained. For this purpose, (1) and (2) are used to 

determine the input and output of the j-th neuron in 𝐿2, (3) and (4) to determine the input and output of the j-th neuron in 𝐿3, 

and (5) and (6) to determine the input and output of the j-th neuron in 𝐿4. 

𝐼𝑗
(𝐿2) =∑ (𝑤𝑗𝑖

(𝐿2) ∗ 𝑋𝑖)
𝑚1

𝑖=1
− 𝜃𝑗       𝑚1: 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 (1) 

𝑂𝑗
(𝐿2) = 1/ (1 + 𝑒

−𝐼𝑗
(𝐿2) 

) (2) 

𝐼𝑗
(𝐿3) = ∑ (𝑤𝑗𝑖

(𝐿3) ∗ 𝑂𝑖
(𝐿2))

𝑚2
𝑖=1 − 𝜃𝑗        𝑚2: 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝐿2   (3) 

𝑂𝑗
(𝐿3) =

1

(1 + 𝑒
−𝐼
𝑗

(𝐿3)

)

                                     (4) 

𝐼𝑗
(𝐿4) =∑ (𝑤𝑗𝑖

(𝐿4) ∗ 𝑂𝑖
(𝐿3))

𝑚3

𝑖=1
− 𝜃𝑗        𝑚3: 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝐿3                                                (5) 

𝑂𝑗
(𝐿4) =

1

(1+𝑒
−𝐼
𝑗
(𝐿4)

)

                                (6) 

The second stage of the backpropagation algorithm consists of propagating the error from the output layer to the input 

layer, passing through the intermediate layers of the network. For this, (7) is used, which quantifies the difference between 

the response of the neurons in the output layer and the desired output (𝑑𝑗). 

𝐸 =
1

2
∑ (𝑑𝑗 − 𝑂𝑗

(𝐿4))
2

𝑚4
𝑗=1        𝑚4: 𝑛𝑢𝑒𝑟𝑜𝑛𝑠 𝑖𝑛 𝐿4    (7) 

Subsequently, the gradient descent algorithm is applied to Equation 7, based on the synaptic weights and the network 

thresholds, obtaining (8), (10) and (12) to adjust the synaptic weights, and (9), (11), and (13) to adjust the thresholds. 

 

𝑤𝑗𝑖
(𝐿4) = 𝑤𝑗𝑖

(𝐿4) + 𝜂 ∗ ((𝑑𝑗 − 𝑂𝑗
(𝐿4)) ∗ 𝑔′ (𝐼𝑗

(𝐿4))) ∗ 𝑂𝑗
(𝐿3)       𝜂: 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒   (8) 

𝜃𝑗
(𝐿4) = 𝜃𝑗

(𝐿4) + 𝜂 ∗ ((𝑑𝑗 − 𝑂𝑗
(𝐿4)) ∗ 𝑔′ (𝐼𝑗

(𝐿4))) ∗ (−1)    (9) 

𝑊𝑗𝑖
(𝐿3) = 𝑊𝑗𝑖

(𝐿3) + h (∑ ((𝑑𝑘 − 𝑂𝑘
(𝐿4)) ∗ 𝑔′ (𝐼𝑘

(𝐿4)) ∗ 𝑊𝑘𝑗
(𝐿4))

𝑚4
𝑘=1 ) ∗ 𝑔′ (𝐼𝑗

(𝐿3)) ∗ 𝑂𝑗
(𝐿2)  (10) 
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𝜃𝑗
(𝐿3) = 𝜃𝑗

(𝐿3) + h (∑ ((𝑑𝑘 − 𝑂𝑘
(𝐿4)) ∗ 𝑔′ (𝐼𝑘

(𝐿4)) ∗ 𝑊𝑘𝑗
(𝐿4))

𝑚4
𝑘=1 ) ∗ 𝑔′ (𝐼𝑗

(𝐿3)) ∗ (−1)  (11) 

𝑊𝑗𝑖
(𝐿2) = 𝑊𝑗𝑖

(𝐿2) + h (∑ ((∑ (𝑑𝑘 − 𝑂𝑘
(𝐿4)) ∗ 𝑔′ (𝐼𝑘

(𝐿4)) ∗ 𝑊𝑘𝑗
(𝐿4)𝑚4

𝑘=1 ) ∗ 𝑔′ (𝐼𝑗
(𝐿3))) ∗ 𝑊𝑘𝑗

(𝐿3) ∗ 𝑔′ (𝐼𝑗
(𝐿2))

𝑚3
𝑘=1 ) ∗ 𝑋𝑖 (12) 

𝜃𝑗
(𝐿2) = 𝜃𝑗

(𝐿2) + h (∑ ((∑ (𝑑𝑘 − 𝑂𝑘
(𝐿4)) ∗ 𝑔′ (𝐼𝑘

(𝐿4)) ∗ 𝑊𝑘𝑗
(𝐿4)𝑚4

𝑘=1 ) ∗ 𝑔′ (𝐼𝑗
(𝐿3))) ∗ 𝑊𝑘𝑗

(𝐿3) ∗ 𝑔′ (𝐼𝑗
(𝐿2))

𝑚3
𝑘=1 ) ∗ (−1) (13) 

 

To evaluate the fit of the model obtained using the ANN, the 𝑅2 were used. Finally, Appendix A shows the structure of 

the programming algorithm in C++ language to implement the ANN in software. 

 

2.2. Genetic Algorithm (GA) Design 

Optimization algorithms are generally used to find the minimum point of a function; however, to obtain the maximum 

point, it is sufficient to multiply the objective function value by (-1). This was done in the optimization techniques employed 

in this work. The GA consists of the stages of evaluation, selection, pairing, crossing and mutation [26, 27]. The independent 

variables of the fermentation process must be set according to the structure of a chromosome. 𝐶ℎ𝑟𝑜𝑚𝑖 = [𝑋1   𝑋2  … 𝑋𝑚], 
where 𝑚 indicates the number of independent variables, and whose value is randomly generated to cover the entire 

experimental region. Each chromosome represents a possible solution to the problem. Then, a population of chromosomes, 

𝑃𝑜𝑝_𝑐ℎ𝑟𝑜𝑚 = [𝐶ℎ𝑟𝑜𝑚1, 𝐶ℎ𝑟𝑜𝑚2, … , 𝐶ℎ𝑟𝑜𝑚𝑁], is generated, where 𝑁 indicates the number of chromosomes that make up 

the population. The evaluation stage determines the process response based on the independent variables of a chromosome 

using ANN. The selection stage selects the most suitable chromosomes from the population, which are those that generate 

the lowest values of the objective function. Generally, the most suitable chromosomes make up 50% of the population, while 

the rest are eliminated. The matching stage determines a set of chromosomes called parents, denoted as Chrom_dad and 

Chrom_mom. To do this, the roulette method is used, which consists of ordering the chromosomes from lowest to highest 

according to the response of the objective function. Then, the probability and cumulative probability of each of the best-fit 

chromosomes are determined using (14) and (15), respectively. Both parameters depend on the position 𝑝 of the best-fit 

chromosomes. To select a parent chromosome, a random number is generated and the best-fit chromosome whose 

Cumu_prob value is greater than the random number is selected. 

𝑃𝑏𝑖 =
𝑁𝑐ℎ− 𝑝 + 1

∑ 𝑝
𝑁𝑐ℎ
𝑝=1

       𝑁𝑐ℎ: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑠𝑡 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑠   (14) 

𝑐𝑢𝑚𝑢_𝑝𝑟𝑜𝑏 = ∑ 𝑃𝑏𝑖
𝑁𝑐ℎ
𝑖=1   (15) 

 

The crossover stage generates a set of chromosomes called descendants, represented by Chrom_desc, which are obtained 

by combining the independent variables that make up Chrom_dad and Chrom_mom, producing two Chrom_desc. To achieve 

this, the following is defined: a crossover point (position of a variable on both chromosomes), a new value for said crossover 

point (C1 and C2) is determined using (16) and (17), and the values of the variables of the chromosomes that are located to 

the right of the crossover point are exchanged. In this way, the new population is composed of the most suitable chromosomes 

and the descendant chromosomes. 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑛𝑒𝑤1 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐶1 − 𝛽(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐶2 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐶1)        𝛽: 𝑅𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 [0,1]  (16) 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑛𝑒𝑤2 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐶2 + 𝛽(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐶2 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐶1)    (17) 

The mutation stage modifies the value of the independent variables of some chromosomes in the new population. The 

number of mutations is determined by (18). To perform the mutations, the independent variables of the affected chromosomes 

are randomly selected. In this way, the steps described above are defined as a generation of the GA and are repeated until the 

optimal process parameters are reached. Finally, Appendix A shows the structure of the programming algorithm in C++ 

language to implement the GA in software. 

𝑀𝑢𝑡𝑎𝑡 = (0.20) ∗ (𝑁) ∗ (𝑚)     (18) 

 

2.3. Particle Swarm Optimization (PSO) 

PSO uses a set of particles (SP), which must explore the experimental region until one of them finds the global optimal 

position (minimum point). To do this, each particle, during its movement, learns both from the others (social behavior) and 

from its own experience (cognitive behavior). To start the search process, the number of independent process variables (𝐷) 

and their respective minimum and maximum values are defined. Each particle 𝑖 has two vectors associated with it: the first 

describes its position 𝑋𝑖 = 𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝐷 , while the second describes its velocity 𝑉𝑖 = 𝑉𝑖1, 𝑉𝑖2, … , 𝑉𝑖𝐷  [28, 29]. For this 

purpose, the values of the components of 𝑋𝑖 and 𝑉𝑖 are initialized randomly to cover the experimental region. In each iteration, 

the ANN is used to evaluate the objective function based on the independent variables of a particle 𝑖. With the results obtained, 

the best solution found by each particle (𝑃𝑏𝑒𝑠𝑡𝑖
𝑡+1) must be selected. To do this, the current response is compared with the 

previous response of a particle 𝑖, as indicated in (19). Also, the best position found by the swarm (𝐺𝑏𝑒𝑠𝑡𝑡) is determined 

using (20). 

𝑃𝑏𝑒𝑠𝑡𝑖
𝑡+1 = {

𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 𝑠𝑖    𝑓(𝑋𝑖) > 𝑃𝑏𝑒𝑠𝑡𝑖

𝑡

𝑋𝑖 𝑠𝑖    𝑓(𝑋𝑖) ≤ 𝑃𝑏𝑒𝑠𝑡𝑖
𝑡      𝑡: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟   (19) 

𝐺𝑏𝑒𝑠𝑡𝑡 = 𝑚𝑖𝑛{𝑃𝑏𝑒𝑠𝑡1
𝑡 , 𝑃𝑏𝑒𝑠𝑡2

𝑡 , … , 𝑃𝑏𝑒𝑠𝑡𝑁𝑆
𝑡 }    (20) 
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The change of the velocity of a particle 𝑖 depends on the following parameters: 𝐺𝑏𝑒𝑠𝑡𝑡, 𝑃𝑏𝑒𝑠𝑡𝑖
𝑡, 𝑉𝑖

𝑡, two social parameters 

(𝑟1 and 𝑟2), and two random numbers (𝑐1 and 𝑐2), as given in (21). Meanwhile, the change of position of a particle 𝑖 depends 

on the variables 𝑋𝑖
𝑡 and 𝑉𝑖

𝑡, as shown in (22). This procedure represents an iteration and should be repeated until the optimal 

process parameters are obtained. Finally, Appendix A shows the structure of the programming algorithm in C++ language to 

implement PSO in software. 

𝑉𝑖
𝑡+1 = 𝑊𝑖𝑛𝑒𝑟 ∗ 𝑉𝑖

𝑡 + 𝑐1 ∗ 𝑟1 ∗ (𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑋𝑖

𝑡) + 𝑐2 ∗ 𝑟2 ∗ (𝐺𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡)    (21) 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡      (22) 

 

2.4. Artificial Bee Colony Algorithm (ABC) 

The ABC algorithm determines the optimal parameters of a process using three types of bees: employee bees, observer 

bees, and scout bees [30, 31]. To initiate the search process, the number of independent process variables (𝐷) and their 

respective levels, both maximum (𝑥𝑚𝑎𝑥) and minimum (𝑥𝑚𝑖𝑛) are defined. Scout bees generate a set of food sources (FS) 

whose position 𝑋𝑖 = 𝑥𝑖,1, … , 𝑥𝑖,𝐷 represents a solution to the optimization problem. The value of the j-th dimension of 𝑋𝑖 is 

determined by (23). 

𝑥𝑖,𝑗 = 𝑥𝑗
𝑚𝑖𝑛 +  𝑟𝑎𝑛𝑑(0,1)(𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛)       𝑖 = 1,2, … , 𝐹𝑆    (23) 

Each bee employed must analyze the position of a food source 𝑋𝑖 to generate a new food source position 

𝑉𝑖 = 𝑣𝑖,1, 𝑣𝑖,2, … , 𝑣𝑖,𝐷, by modifying only one parameter of 𝑋𝑖. To do this, a food source 𝑋𝑘 is randomly chosen, different 

from the analyzed food source. In addition, a dimension of 𝑋𝑖 must be randomly chosen, using (24) to generate a new value 

of the j-th dimension of 𝑉𝑖. 

𝑉𝑖,𝑗 = 𝑥𝑖,𝑗 + ∅𝑖,𝑗(𝑥𝑖,𝑗 − 𝑥𝑘,𝑗)      ∅𝑖,𝑗𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 [−1, 1]   (24) 

Next, ANN is used to determine the objective function (𝑓𝑖) response of 𝑉𝑖 and 𝑋𝑖. If the quality of 𝑉𝑖 is better than that 

of 𝑋𝑖, then 𝑉𝑖 will replace 𝑋𝑖 in the population. To do this, the fitness value of food sources is determined using (25). 

𝑓𝑖𝑡𝑖 = {

1

1+𝑓𝑖
           𝑠𝑖 𝑓𝑖 ≥ 0

1 + |𝑓𝑖|     𝑠𝑖 𝑓𝑖 < 0
                                    (25) 

Scout bees use range selection to select a food source from among the other bees employed. To do this, the probability 

of the food sources is determined by (26). The probabilities are then ordered from highest to lowest and compared to a random 

number between 0 and 1. If the random number is greater than 𝑝𝑖 , then a new food source is generated using (24). 

Furthermore, if the quality of 𝑉𝑖 is better than 𝑋𝑖, then 𝑉𝑖 replaces 𝑋𝑖 in the population. 

𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑆𝑁
𝑖=1

    (26) 

If, after performing the above process several times, a food source does not improve, it will be eliminated. In this case, 

a scout bee generates a new food source using (23). To determine whether a food source should be eliminated, a counter 

records the number of times a food source is visited by both employed and observer bees. If the counter reaches its limit, the 

food source is eliminated. Finally, Appendix A shows the structure of the programming algorithm in the C++ language to 

implement ABC in software. 

 

2.5. Desirability Function 

The SSF process analyzed has more than one response; therefore, the desirability function, which correlates multiple 

responses into a single value, was used [32]. With it, several responses can be optimized, either by minimizing some or 

maximizing others. To do this, the desirability of each response (𝑑1, … , 𝑑𝑛) is determined and a set of weights (𝑤1, … , 𝑤𝑛) is 

defined, as shown in (27). The desirability value of a response is obtained by (28). The value of the weights depends on the 

importance of each response in the process and must be between 0 (inadequate response) and 1 (ideal response). 

 

𝐷𝐸 = 𝑤1𝑑1 + 𝑤2𝑑2 +⋯+ 𝑤5𝑑5                                                        (27) 

𝑑𝑛 =

{
 
 

 
 

𝑦𝑖−𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
       𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

.

.
𝑦𝑚𝑎𝑥−𝑦𝑖

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
       𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

                                         (28) 

 

3. Results 
To validate the functionality of the artificial intelligence tools used, a process was analyzed using parametric tests, 

employing the RSM and the proposed method. In this sense, the production of proteases for the cheese industry was carried 

out using the microorganism Rhizomucor miehei, and wheat bran, wheat flour, soybeans and corn were used as substrates 

[33]. In this process, the responses analyzed were milk coagulation activity (Y1), specific coagulation activity (Y2), 

proteolytic activity (Y3), specific proteolytic activity (Y4) and the ratio between milk coagulation activity and proteolytic 

activity (Y5). However, Y2 and Y5, which are the most important responses of the fermentation process, were optimized. 

For this process, the microorganism was grown on potato dextrose agar (PDA) slant plates and stored at 4°C for use. To 

prepare the inoculum, Rhizomucor miehei was inoculated into 90-mm Petri dishes with 20 mL of PDA and incubated at 37°C 

for 5 days. The inoculum was then obtained by adding 30 mL of distilled water and scraping the surface of the PDA, all under 

sterile conditions. For the preparation of the fermentation medium, corn and soybeans were ground and sieved to obtain a 
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particle size of 1 mm. A mineral solution composed of 0.007 g/L of ZnSO₄ 7H₂O, 0.007 g/L of MgSO₄ 7H₂O, 0.07 g/L of 

CuSO₄ 7H₂O and 0.09 g/L of FeSO₄ was prepared. To adjust the humidity of the substrates, ten milliliters of this solution 

diluted in one liter of distilled water was used to complete the mineral solution. Then, 20 grams of wet substrate were placed 

in 250 mL Erlenmeyer flasks, which were autoclaved for 20 min at 121 °C. To inoculate the medium, a spore suspension 

(10⁶ spores/mL) was used. The modeling and optimization of the fermentation process were carried out with the RSM in 

Minitab 17 software, which used a second-order polynomial to model the process and a CCD to analyze it, considering five 

independent variables: fermentation time (X1), temperature (X2), pH (X3), moisture content (X4) and nitrogen concentration 

(X5). Table 1 shows the characteristics of the CCD independent variables. To optimize the process and consequently obtain 

the maximum value of Y2 and Y5, Y1 production must be maximized and Y2 production minimized. Using RSM, 𝑅2 values 

of 0.8536 and 0.5783 were obtained for Y3 and Y5, respectively. Additionally, it was determined that the optimal parameters 

are X1 = 81.21 h, X2 = 41.11 °C, X3 = 6.31, X4 = 80% and X5 = 1.33%, through which Y1=2258.13 soxhlet units/mL, 

Y2=5.11 mg/mL, Y3=441.90 soxhlet units/mg, Y4=1.14 protease units/mg and Y5=388.66 can be obtained. 

 

Table 1.  

Characteristics of the independent variables used in the CCD. 

Variable Units Coded level 

- -1 0 +1 + 

X1 Hour 24 48 72 96 120 

X2 °C 30 35 40 45 50 

X3 - 3 4 5 6 7 

X4 % v/w 40 50 60 70 80 

X5 % v/w 0.5 1 1.5 2 2.5 

 

For the proposed method, the process was modeled using an ANN composed of five inputs (X1, X2, X3, X4, and X5), 

two hidden layers with ten neurons each, and one output with five neurons (Y1, Y2, Y3, Y4, and Y5). With this process 

configuration, 𝑅2 values of 0.98894 and 0.97761 were obtained for Y3 and Y5, respectively. This indicates greater precision 

than the classical method described above. Table 2 shows the results of the CCD, the RSM, and the ANN. MATLABTM 

software was used for the software implementation of the ANN, GA, PSO, and ABC, as well as for obtaining the response 

surfaces and contour plots. For the optimization techniques, 50 chromosomes and 30 generations were used for the GA, 50 

particles and 30 iterations for the PSO, and 50 bees and 30 cycles for the ABC. Table 3 shows the optimal parameters obtained 

from the optimization techniques used and from RSM. As can be seen, the value of Y1 obtained from the RSM is outside the 

range of the experimental results of the process, which may indicate an incorrect result. Furthermore, an increase in the final 

values of Y2, Y3, and Y4 is predicted. Another very important aspect is that a reduction in the use of process resources can 

be achieved, since lower values of X1, X2, X3, X4 and X5 are required compared to RSM. Finally, Figures 3(a), 3(b), 3(c) 

and 3(d) show the variation of Y3 as a function of X1, X2, X3, X4 and X5, using response surface plots and contour plots. 

These figures allow to visualization of the areas of interest where the Y3 values are high, low, or constant. Furthermore, 

Figure 3(e) shows the number of iterations required for the convergence of the optimization techniques, and as can be seen, 

these systems quickly determine the maximum throughput of the process. 
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Table 2.  

Experimental results of BBD, RSM and ANN results in TH-PR production. 

X1 X2 X3 X4 X5 Y3 Y5 

Experimental RSM ANN Experimental RSM ANN 

48 35 4 50 1 59.61 10.792 58.234 64.52 19.284 64.674 

96 35 4 50 1 30.84 52.7 23.521 139.98 87.252 141.14 

48 45 4 50 1 122.21 78.14 122.79 158.37 105.22 158.77 

96 45 4 50 1 24.46 50.496 28.236 66.36 126.63 64.738 

48 35 6 50 1 109.29 224.9 112.19 130.24 152.82 130.28 

96 35 6 50 1 372.44 295.51 365.84 257.45 181.52 257.19 

48 45 6 50 1 342.5 294.24 345.36 261.15 175.56 263.25 

96 45 6 50 1 221.48 295.3 215.36 154.44 157.7 154.84 

48 35 4 70 1 92.48 69.072 91.274 145.8 73.52 145.53 

96 35 4 70 1 133.05 145.06 132.95 185.2 183.82 184.73 

48 45 4 70 1 162.74 174.42 163.29 196.67 171.66 197.26 

96 45 4 70 1 144.1 180.86 143.7 205.06 235.4 204.94 

48 35 6 70 1 192.11 175.98 194.21 163.18 201.46 161.14 

96 35 6 70 1 195.76 280.67 199.95 344.83 272.5 339.23 

48 45 6 70 1 248.02 283.32 247.56 303.13 236.4 301.23 

96 45 6 70 1 374.4 318.46 371.54 279.02 260.88 277.8 

48 35 4 50 2 15.34 11.154 21.146 133.33 70.784 132.25 

96 35 4 50 2 31.6 98.374 32.429 72.46 114.75 71.977 

48 45 4 50 2 20.49 106.6 25.751 52.79 134.52 50.293 

96 45 4 50 2 172.55 124.27 170.74 189.56 131.93 188.26 

48 35 6 50 2 203.32 219.66 198.46 247.45 230.32 247.63 

96 35 6 50 2 292.99 335.58 293.24 233.04 235.02 232.7 

48 45 6 50 2 344 317.11 348.91 286.45 230.86 287.13 

96 45 6 50 2 282.92 363.48 284.33 164.65 189 163.6 

48 35 4 70 2 8.3 53.434 8.0563 19.49 75.82 20.57 

96 35 4 70 2 138.39 174.73 141.75 146.08 162.12 146.29 

48 45 4 70 2 177.47 186.88 176.99 179.3 151.76 180.15 

96 45 4 70 2 244.55 238.63 241.43 215.83 191.5 214.86 

48 35 6 70 2 143.56 154.74 144.3 396.83 229.76 392.15 

96 35 6 70 2 256.01 304.74 254.19 221.82 276.8 221.65 

48 45 6 70 2 251.64 290.19 255.02 154.22 242.5 151.24 

96 45 6 70 2 275.32 370.64 269.42 243.26 242.98 253.15 

24 40 5 60 1.5 0 13.073 2.2729 0 87.672 6.1551 

120 40 5 60 1.5 95.31 135.43 94.786 219.61 156.12 220.5 

72 30 5 60 1.5 9.25 19.799 5.0484 53.48 119.84 54.684 

72 50 5 60 1.5 110.7 153.04 113.25 214.35 171.96 214.26 

72 40 3 60 1.5 31.75 74.565 27.151 150.38 100 150.99 

72 40 7 60 1.5 410.84 420.68 409.65 209.15 285.01 208.39 

72 40 5 40 1.5 315.68 375.7 320.01 158.87 199.2 159.04 

72 40 5 80 1.5 448.28 441.14 447.56 323.88 307.41 324.63 

72 40 5 60 0.5 113.37 238.85 117.76 102.04 205.3 103.36 

72 40 5 60 2.5 363.96 291.39 378.45 318.18 238.9 317.62 

72 40 5 60 1.5 211.13 296.82 279.08 311 241.7 255.71 

72 40 5 60 1.5 294.25 296.82 279.08 212.43 241.7 255.71 

72 40 5 60 1.5 273.96 296.82 279.08 275.2 241.7 255.71 

72 40 5 60 1.5 324.93 296.82 279.08 209.23 241.7 255.71 

72 40 5 60 1.5 286.42 296.82 279.08 273.23 241.7 255.71 

 
 

Table 3.  

Results obtained from RSM and artificial intelligence tools. 

Method X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 Y5 

RSM 81.21 41.11 6.31 80.00 1.33 2258.13 5.11 441.900 1.14 388.66 

GA 74.740 38.909 4.2581 80.00 1.232 1541.3 5.6891 448.200 1.988 342.25 

PSO 74.594 38.891 4.263 80.000 1.2276 1541.2 5.6899 448.190 1.9883 338.37 

ABC 74.583 38.896 4.260 80.000 1.228 1541.2 5.6901 448.190 1.988 339.14 
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Figure 3.  

Results obtained from protease optimization. 
 

4. Discussion 
The proposed method has demonstrated that artificial intelligence can manipulate variables in systems that encompass a 

wide variety of processes, which require the integration of components and information processing during their design. In 

this regard, it was observed that its application in SSF processes demonstrates that an ANN can model systems with multiple 

inputs and outputs with a high degree of accuracy, based on the results of an experimental design. To achieve this, it is only 

necessary to adjust the number of layers and neurons in the network. Furthermore, GA, PSO, and ABC correctly determined 

the optimal parameter values for the independent process variables, regardless of the characteristics of the response surface. 

This allows the values of the independent variables to be appropriately adjusted to increase production. In this case, only the 

number of iterations and the number of system elements (chromosomes, particles, or bees) need to be defined to determine 

the optimal process values. Another important point is that the implementation of these types of systems, that is, theoretical 

and experimental modeling, hardware simulation, and verification, only requires methods and tools developed with software 

or hardware compatible with the C++ language. Due to the characteristics of ANN, GA, PSO, and ABC, it is possible to 

model and optimize highly complex systems (both linear and nonlinear), regardless of the number of independent or 

dependent variables, without compromising model accuracy. Furthermore, system cost is reduced, as there is no need to 

purchase additional software, as all elements can be implemented using MATLAB software. 

 

5. Conclusions 
In this work, the analysis and characterization of artificial intelligence systems for modeling and optimizing SSF 

processes were presented, focusing specifically on optimal values for process parameters, using ANN, GA, PSO, and ABC. 

In this context, the ANN was able to model fermentation processes with a high degree of accuracy, regardless of the number 

of input variables, the number of output variables, or the shape of the response surface. Furthermore, GA, PSO, and ABC 

successfully determined the optimal values for the process parameters and manipulated them until the desired values were 

achieved. By adjusting these variables, an approach is presented for managing and controlling the most important process 

parameters. Furthermore, to implement these artificial intelligence algorithms, only data from an experimental design is 
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required, without the need for complex mathematical equations, and C++ software is sufficient. However, the study may 

have limitations, since if the microorganism and substrate are not properly selected, the fermentation process yield will be 

low. This is because these elements are the most important. Furthermore, if the experimental tests (runs of the design of 

experiments) are not performed correctly, regardless of the methods used, the modeling and optimization will be flawed. 
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Appendix A. C++ programming algorithms for the implementation of artificial intelligence tools. 

General structure of the algorithm in C++ to implement the ANN in MATLABTM 

% Initialize the value of the synaptic weights randomly 

epochs = 100000; samples = 47; eta=0.075;  %eta = η 

for k1=1:1: epochs 

for k2=1:1: samples  % samples are CCD data. 

% Determine the input and output of the neurons in L2 (Equations 1 and 2) 

I2j1=(w1ji10*X0)+(w1ji11*X1)+ … +(w1ji15*X5);  Y2j1=1/(1+exp(-I1j1)); 

% Determine the input and output of the neurons in L3 (Equations 3 and 4) 

I3j1=(w2ji10*X0)+(w2ji11*Y1j1)+ … +(w2ji110*Y1j10);  Y3j1=1/(1+exp(-I2j1)); 

% Determine the input and output of the neurons in L4 (Equations 5 and 6) 

I4j1=(w3ji10*X0)+(w3ji11*Y2j1)+ … +(w3ji110*Y2j10);  Y4j1=1/(1+exp(-I3j1)); 

%Update the synaptic weights of L4 (Equation 8) 

error31=(dj1-Y3j1)*(Y3j1*(1-Y3j1));  w3ji11=w3ji11+(eta*error31*Y2j1); 

%Update the synaptic weights of L3 (Equation 9) 

error21=((error31*w3ji11)+…+(error35*w3ji51))*(Y2j1*(1-Y2j1));  w2ji11=w2ji11+(eta*error21*Y1j1); 

%Update the synaptic weights of L2 (Equation 10) 

error11=((error21*w2ji11)+…+(error210*w2ji101))*(Y1j1*(1-Y1j1));    w1ji11=w1ji11+(eta*error11*X1); 

end 

end 

General structure of the algorithm in C++ to implement PSO in MATLABTM 

SP = 40; D=5; c1i=0.5; c1f=2.5;  c2i=2.5;  c2f=0.5; t=0;  tmax=iteration;  W_inermax=0.9; W_inermin=0.4; 

iteration=30; Pbest_i=zeros(SP,1);  Z1=zeros(SP,1);  X_i=zeros(SP,D);  V_i=zeros(SP,D); 

for k1=1:1:SP 

%Randomly generate X_i and V_i. Use ANN to evaluate X_i; its response is denoted as YANN. 

fila1 = fila1 + 1;  Pbest_i(fila1,columna1)=X_i(fila1,columna1);     Z1(fila1,columna1)=YANN; 

end 

for k2=1:1:SP  % Determine Gbest  

fila1 = fila1 + 1;  ZZ1=Z1(fila1,columna1); 

if ZZ1 <= Gbest1 

Gbest1 = ZZ1;   Gbest_i = X_i(fila1,:); 

end 

end 

for k3=1:1: iteracion  % Update particle speed and position 

for k4=1:1:(SP*D) 

fila1 = fila1 + 1;     r1=rand;     r2=rand;     W_iner=((W_inermax-W_inermin)*((T-t)/T))+W_inermin; 

c1 = ((c1f - c1i)*(t/T)) + c1i;  c2 = ((c2f - c2i)*(t/T)) + c2i; 

compo_inercia=((W_iner)*(V_i(fila1,col1)));   compo_cogniti=((c1*r1)*((Pbest_i(fila1,col1))-(X_i(fila1,col1)))); 

        compo_social=(c2*r2)*((Gbest_i(fila2,col1))-(X_i(fila1,col1))); 

velocity=compo_inercia+compo_cogniti+compo_social;  % ecuacion 18 

        V_i(fila1,col1) = velocity;    X_i = X_i(fila1,col1) + V_i(fila1,col1); 

 end 

for k5=1:1:(SP)  % Determine the value of Pbest_i of each particle 

% Zx_i and Zpbest are ANN responses based on the values of X_i and Pbest_i, respectively 

Z1(fila1,1)=Zx_i; 

if Zx_i <= Zpbest 

Pbest_i(fila1,:) = X_i(fila1,:); 

End 
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 end 

    for k6=1:1:SP  % Determine Gbest 

        fila1 = fila1 + 1;  ZZ1=Z1(fila1,1); 

        if ZZ1 <= Gbest1 

            Gbest1 = ZZ1;   Gbest_i = X_i(fila1,:); 

        end 

    end 

end 

 

General structure of the algorithm in C++ to implement GA in MATLAB™ 

Generation=30; N=50; m=5;  n=0;  Pb_acu=0;  Pop_chrom=zeros(N,m);  Z1=zeros(N,1);  Opt_chrom=25;  

Pop_chrom_opti=zeros(Opt_chrom,m);  Z1_opti=zeros(N,1);  Probability=zeros(Opt_chrom,2);  

Parents=zeros(Opt_chrom,1); 

for k1=1:1:Npop  % Randomly generate the values of the chromosome variables 

    fila1 = fila1 + 1;  x1=rand;  Vdesnor = ((VmaxE1-VminE1)*(x1)) + VminE1;  Pop_chrom(fila_val1,columna1) = 

Vdesnor;  

end 

for k2=1:1:Generation  

    for k3=1:1:N  % Evaluate each chromosome of Pop_chrom 

        % Use ANN to evaluate X_i; its response is denoted as YANN. 

        Z1(fila_val1,columna1)=z1; 

    end 

    costORDER = sort(Z1,'descend');  % Order the chromosomes according to the ANN response 

    for k12=1:1:Opt_chrom  % Save the fittest chromosomes 

        fila1 = fila1 + 1;  Pop_chrom_opti(fila1,:)=Pop_chrom(fila1,:);  Z1_opti(fila1,columna1)=Z1(fila1,columna1); 

    end 

    for k13=1:1:Nkeep  % Determine the probability of range 

        n=n+1;  Pb=(Nkeep-n+1)/(Nkeep*(Nkeep+1)/(2));  Pb_acu=Pb_acu+Pb;  Probability(n,columna1)=Pb;   

        Probability(n,columna2)=Pb_acu; 

    end 

    for k14=1:1:Opt_chrom  % Determine the parent chromosomes 

        fila1 = fila1 + 1;  Parent_val = rand; 

        for k15=1:1:Opt_chrom 

            fila2 = fila2 + 1;  Prob_parent=Pn_acum(fila2,columna2); 

            if Parent_val < Prob_parent 

                cont=cont + 1; 

                if cont == 1 

                    Parents(fila1,columna1)=fila2; 

                end 

            end 

        end 

        fila_val2=0; cont=0; 

    end 

    pos_cruce=(m - 1)*(rand) + 1;  pos_cruce=round(pos_cruce);  beta=rand;     % Select the crossover point of a 

chromosome 

    if pos_cruce == 1  %Parents(fila_val1,1); 

        mother=Parents(fila_val1,1);  father=Parents(fila_val2,1);    

        parent_new1=mother-((beta)*(mother-father));  parent_new2=father+((beta)*(mother-father)); 

    end 

    var_mutated=round((0.20)*(N-1)*(m));  valmax_col=m;  valmin_col=0.5;  valmax_row=N;  valmin_row=2; 

        for k21=1:1:var_mutated 

            muta_row=round(((valmax_row-valmin_row)*(rand)) + valmin_row);  muta_col=round(((valmax_col-

valmin_col)*(rand)) + valmin_col); 

            new_valor=((VmaxE1-VminE1)*(rand)) + VminE1;  Pop_chrom(muta_row,muta_col)=new_valor; 

        end 

end 

 

General structure of the algorithm in C++ to implement ABC in MATLAB™ 

FS = 50; D=5;   X_i=zeros(SP,D);  Z1=zeros(FS,1);  Z2=zeros(FS,1); TRIALS=zeros(FS,1);  Z3=zeros(FS,1);  

V_i=zeros(SP,D); 

for k1=1:1:(FS*D) 

%Randomly generate X_i and V_i. Use ANN to evaluate X_i; its response is denoted as YANN. 

    fila1 = fila1 + 1;  Xij=Xminj+(rand)*(Xmaxj-Xminj);  X_i(fila1,col_val1) = Xij; 
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end 

for k10=1:1:ciclos  % Produce a new food source Vij from Xij 

    fila1 = fila1 + 1; 

    valor1=(NumVariables - 1)*(rand) + 1;   valor_J=round(valor1); 

    valor2=(Num_abejas-1)*(rand)+1;  valor_K=round(valor2); 

    Oij = ((1-(-1))*(rand)) + (-1); % Random number between -1 and 1 

    Xij=X_i(fila1,valor_J);  % valor_J is the jth dimension of X_i 

 

    Xkj=X_i(valor_K,valor_J);  % valor_K is the k-th food source 

    Vij = Xij + Oij*(Xij-Xkj);  V_i(fila_val1,valor_J)=Vij; 

    for k2=1:1:Num_abejas 

        % Determine the response of the ANN based on the variables of X_i 

        fit_i = 1/(1+z1);  %z1 is the response of the ANN 

        Z1(fila1,columna1)=z1;   Z1(fila1,columna2)=fit_i;  

        % Determine the response of the ANN based on the variables of V_i 

        fit_i = 1/(1+z1);  %z1 es la respuesta de la ANN 

        Z2(fila1,columna1)=z1;  Z2(fila1,columna2)=fit_i; 

    end 

    for k5=1:1:Num_abejas  % Greedy selection process 

        fila1 = fila1 + 1; 

        R1=Z1(fila_val1,columna2);  R2=Z2(fila_val1,columna2); 

        if R2 >= R1 

            valXX3(fila1,:)=V_i(fila1,:);  Z3(fila1,:)=Z2(fila1,:);  TRIALS(fila1,columna1)=0; 

        else 

            valXX3(fila1,:)=X_i(fila1,:);  Z3(fila1,:)=Z1(fila1,:);  TRIALS(fila1,columna1)= 1 + TRIALS(fila1,columna1); 

        end 

    end 

    Fit_Fun=Z3(:,2);   costORDE = sort(Fit_Fun,'descend');   Sel_Prob=zeros(FS,1); 

    t=t+1; n=Num_abejas; k=0;  fila1 = 0; 

    for k7=1:1:Num_abejas  % Ranking Selection 

        k = k + 1;    fila1 = fila1 + 1; 

        at=0.2+((3*t)/(4*N));  Pk=(1/n)+((at)*((n+1-(2*k))/(n*(n+1))));  Sel_Prob(fila1,1)=Pk; 

    end 

    for k6=1:1:FS 

        r1=rand; 

        for k7=1:1:FS 

            fila2 = fila2 + 1;  Pi=Sel_Prob(fila2,columna1); 

            if r1 > Pi 

                % A new food source is generated and compared to the current food source. If it is better, the process described 

above is performed. 

            end 

        end 

    end 

    fila1 = 0;  abejaExplo = 0; 

    for k9=1:1:Num_abejas  % Scout Bee Phase 

        fila1 = fila1 + 1;   prue_abej=TRIALS(fila1,columna1); 

        if prue_abej >= trialslimit 

            abejaExplo = abejaExplo + 1; 

            if abejaExplo <= 1 

                Xij=VminE1+(rand)*(VmaxE1-VminE1);   TRIALS(fila_val1,columna1)=0;           

            end 

        end 

    end 

end 


