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Abstract 

Developing a hydrological forecasting model based on past records is crucial for effective hydropower reservoir management 

and scheduling. Numerous popular discharge forecasting models have been developed; however, real-time forecasts remain 

challenging. This study evaluates discharge forecasts using the Markov Chain model, Seasonal Autoregressive Integrated 

Moving Average (SARIMA), and Multiple Linear Regression (MLR) models for forecasting monthly discharge time series. 

This study compares the accuracy of the discharge forecast results produced by the Markov Chain, SARIMA, and Multiple 

Linear Regression using five statistical indicators. Based on the simulation results, the Markov Chain, SARIMA, and MLR 

have accuracy levels of probability in discharge of 63%, 66%, and 76%, respectively. In comparison to other models, the 

highest correlation (r) is found in the MLR model (0.76) with MAPE (0.19), followed by SARIMA and Markov Chain. 

Therefore, the most accurate, precise, and representative water source model alternative for forecasts is the MLR model. The 

Markov Chain model and the SARIMA model are time series generation models, while the MLR model is a statistical 

regression model. In addition, this model is to be selected as the basis for modeling in forecasting river flow or optimal 

management of a reservoir, as well as determining future discharge, especially in monsoon climate regions. 
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The identification of suitable models for forecasting future monthly inflows to hydropower reservoirs is a significant 

precondition for effective reservoir management and scheduling. The results, especially in long-term predictions, are 

useful in many water resources applications such as environmental protection, drought management, operation of water 

supply utilities, and optimal reservoir operation involving multiple objectives of irrigation, hydropower generation, and 

sustainable development of water resources. As such, hydrologic time series forecasting has always been of particular 

interest in operational hydrology. It has received tremendous attention from researchers in the last few decades, and many 

models for hydrologic time series forecasting have been proposed to improve hydrology forecasting [1-3]. 

These models can be broadly categorized into three groups: regression-based methods, time series models and AI-

based methods. Multiple linear regression (MLR) analysis is among the most widely utilized statistical techniques [3-5]. 

A regression model that involves more than one regressor variable is called a multiple linear regression model [5]. 

Multiple linear regression modelling has been widely utilized for modelling such as urban runoff pollutant load, wash 

load sediment concentrations, suspended-sediment discharge, and prediction of swell potential of clayey soils [6-8]. The 

is suitable for predicting discharge data, as well as for optimal reservoir management [3-5]. 

Markov chain models, often recognized as autoregressive stochastic models, are widely regarded as effective tools for 

discharge forecasting, particularly when the discharge at a given time depends on the flow from previous periods. Over time, 

these models have undergone significant improvements, making Markov chains more reliable for predicting both river and 

reservoir discharges [9, 10]. 

Markov Chain is used to evaluate discharge predictability by leveraging key hydrological characteristics. However, 

achieving accurate forecasts requires advanced data processing capabilities to refine the model’s performance. Recent studies 

highlight the suitability of Markov chain models for estimating inflow discharge, tackling challenges like managing excess 

water discharge and supporting optimized reservoir operations. Built on established frameworks such as the French EDF 

model, these models prove to be essential for predicting discharge patterns and promoting more efficient, sustainable reservoir 

management [10-12]. 

The Seasonal Autoregressive Integrated Moving Average (SARIMA) model is a powerful tool in hydrology, widely 

used to forecast time series data that show both trends and seasonal patterns — such as river inflows, rainfall, and reservoir 

levels. Its ability to account for recurring climatic cycles makes it especially effective for modeling hydrological processes 

influenced by seasonal changes. Research has shown SARIMA’s effectiveness in predicting monthly river inflows, daily 

monsoon rainfall, and groundwater levels, providing reliable forecasts that are essential for managing water resources, 

controlling floods, and mitigating droughts. Additionally, SARIMA’s flexibility allows it to be combined with advanced 

machine learning models, further improving its accuracy when dealing with complex hydrological systems [13-15]. 

 

2. Method 
The study was conducted at the Ciberang watershed, the Ciujung sub-watershed, in Lebak Regency, Banten Province 

(Figure 1). The Ciberang watershed covers a catchment area of 458 ㎢. The Ciberang River, originating at the Karian dam 

site and extending 78.3 km from the mountain’s summit, flows through the central Karian basin and converges with the 

Ciujung River at Rangkasbitung [16]. 
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Figure 1.  

Map Location of Ciberang-Karian watershed area in Indonesia. 

 

This study utilized discharge (Q) and rainfall (P) data acquired directly from existing records maintained by pertinent 

agencies, including the office of the Cidanau-Ciujung-Cidurian River Area (BBWSC3) and the Korean International 

Cooperation Agency (KOICA) [16]. 

All the discharge data Figure 1 utilized data recorded from the discharge gauge station Q1 Bojongmanik (6º 34' 33.031" 

S- 106º 10' 9.354" E), Q2 Leuwidamar (6º 30' 49.982" S- 106º 11' 37.136" E), Q3 Jahe Cilaki (6º 25' 47.568" S -106º 14' 

26.664" E), Q4 Karian (of 5°50′ 7°10′S-105°48′ 07°28′ E), Q5 Sabagi (6º 23' 50.91" S-106º 15' 14.58" E), Q6 Jembatan 

Keong (6º 21' 30.661" S -106º 14' 34.523" E), Q7 Jembatan Rangkas (6º 20' 55.223" S-106º 14' 49.578" E). In this study, 

Karian Q4 (1997-2023) input discharge data was used in Table 1 [16]. 

The input discharge data in this study was built upon our prior study published in E3S Web of Conf. Volume 485, 2024. 

For the input discharge data from previous research, this will be referred to as historic discharge. Furthermore, this research 

aims to deepen the understanding of forecasting input discharge, while the previous study aimed to deepen the understanding 

of generating input discharge. 
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Table 1.  

Water discharge data at Karian (1997–2023). 

Yea

r 

Januar

y 

Februar

y 

Marc

h 

Apri

l 

Ma

y 

Jun

e 

Jul

y 

Augus

t 

Septembe

r 

Octobe

r 

Novembe

r 

Decembe

r 

1997 20 13 16 17 18 6 4 6 4 5 9 10 

1998 12 20 21 20 18 10 11 4 10 16 18 16 

1999 43 23 16 11 10 8 8 5 7 12 5 16 

2000 19 35 15 9 10 9 9 5 8 8 18 9 

2001 20 36 17 12 12 10 11 8 10 11 12 7 

2002 12 23 13 18 10 8 10 6 10 5 9 13 

2003 12 28 13 15 18 9 8 3 10 9 9 37 

2004 10 19 15 15 10 4 9 4 8 8 21 12 

2005 16 33 15 14 18 14 14 10 8 9 19 15 

2006 19 34 17 14 13 9 7 7 7 14 14 13 

2007 20 29 16 14 13 6 8 9 15 16 16 20 

2008 18 26 17 17 13 8 9 8 7 20 14 16 

2009 13 18 12 18 14 10 9 10 4 18 10 15 

2010 13 21 11 9 8 9 13 16 11 23 9 14 

2011 18 20 19 16 14 7 10 6 5 11 19 15 

2012 26 19 14 15 10 8 7 4 6 10 13 17 

2013 45 22 13 15 17 10 13 10 9 9 6 15 

2014 25 25 13 14 14 8 11 11 8 13 21 13 

2015 22 28 13 16 16 9 8 4 4 4 12 18 

2016 20 30 15 14 10 12 13 9 4 7 5 22 

2017 20 27 14 13 13 12 12 9 8 14 12 13 

2018 13 23 11 11 10 7 7 6 7 5 13 10 

2019 15 19 15 12 8 8 7 6 10 7 8 15 

2020 8 22 11 10 5 8 8 6 6 10 6 34 

2021 16 28 10 15 8 8 10 8 12 7 5 12 

2022 8 20 16 8 11 13 10 10 7 9 6 23 

2023 20 22 12 7 11 6 10 7 6 8 12 8 

 

All the rainfall data Figure 1 utilized data recorded from the Rainfall gauge station of P1 Banjar Irrigation (6º 34' 9.12" 

S-106º 24' 39.96" E), P2 Ciminyak Cilaki (6º 32' 22.92" S-106º 18' 29.16" E), P3 Sampang Peundeuy (6º 30' 6.12" S-106º 

11' 21.84" E), P4 Sajira (6º 29' 58.6" S- 106º 21' 57.38" E), P5 Cimarga (6º 25' 26.04" S- 106º 14' 7.08" E) and P6 Pasir Ona 

(6º 22' 9.84" S-106º 15' 56.88" E). The rainfall data used is in the range of 1997-2023 (Figure 1)  [16]. 

 

2.1. Rainfall Analysis 

For the analysis of the rainfall data used in this study, monthly rainfall data were recorded at nine selected rain gauge 

stations (Figure 1). The first step for processing rainfall data is filling in rainfall data and testing consistency for data 

adjustment [17, 18]. The second stage is to calculate the regional rainfall using the arithmetic method [19]. 

Water Source Model Analysis 

 

2.2. Multiple Linear Regression (MLR) 

The multiple linear regression model can be utilized to fill data gaps, generate, and forecast data. The MLR model 

examines the relationship between rainfall and discharge, employing multiple linear regression statistics to forecast input 

discharge [3-5]. 

In multiple linear regression analysis, variables are categorized as dependent and independent. These variables need to 

be assessed on an MLR scale (i.e., an interval or ratio variable) [3-5]. Therefore, in this research, the Karian input discharge 

generation model uses multiple linear regression analysis, referred to as the MLR model. 

Multiple linear regression includes binary, ternary, and quaternary models. The most suitable model was selected from 

these various models based on the one with the highest determination value. Previous research indicates that the quaternary 

variation model has a higher determination value compared to the ternary and binary variations. This method is preferred due 

to its dynamic statistical nuances, which capture variations in hydrological components, such as rainfall and discharge [3-5, 

20, 21]. 
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Figure 2. 

Multiple Linear regression of rainfall models. 
                                                   Source: Sabar [22], Marselina et al. [23] and Dar [24] 

 

2.3. Formula and Calculation of Multiple Linear Regression Rainfall-Discharge Dar [24]; Patel, et al. [25] and Gupta and Kumar [2]: 

 

𝑦𝑖 = 𝛽0+𝛽1𝑥𝑖 + 𝛽2𝑧𝑖 + ⋯ + 𝜖                                  (5) 

 

Where, for i=n observations: 

yi     = dependent variable (monthly average discharge at Reservoir) 

xi     = explanatory variables (monthly average discharge at neighboring stations) 

zi        = explanatory variables (monthly average at rainfall neighboring stations) 

β0     = y-intercept (constant term) 

β1, β2 =slope coefficients for each explanatory  

variable 

ϵ     = the model's error term (also known as the residuals) 

2.3.1. Seasonal Autoregressive Integrated Moving Average (SARIMA) 

The Seasonal Autoregressive Integrated Moving Average (SARIMA) model is an advanced version of the ARIMA 

model, designed to handle time series data that show both regular (non-seasonal) trends and recurring seasonal patterns. It’s 

represented as ARIMA(p,d,q)(P,D,Q)[s], where Eshragh et al. [26], Perez-Guerra et al. [27] and Lee and Kim [28]: 

• p: Non-seasonal autoregressive order (how past values influence the present)  

• d: Non-seasonal differencing (to make the data stationary)  

• q: Non-seasonal moving average order (how past errors influence the present)  

• P: Seasonal autoregressive order (captures seasonal effects from past values)  

• D: Seasonal differencing (removes seasonal trends)  

• Q: Seasonal moving average order (captures seasonal error patterns)  

• s: The length of the seasonal cycle (e.g., 12 for monthly data with yearly seasonality) 

This setup allows SARIMA to model time series data that displays both short-term fluctuations and longer-term seasonal 

behaviors. The model’s multiplicative structure comes from combining non-seasonal and seasonal components. 

Mathematically, it is expressed [29, 30]: 

Φ𝑝(B)Φ𝑝(𝐵𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑌𝑡 = Θ𝑞(𝐵)Θ𝑄(𝐵𝑠)𝜀𝑡 

Where : 

Φp(B) and Θq(B) represent the non-seasonal autoregressive and moving average terms. 

Φp(Bs)and ΘQ(Bs) capture the seasonal autoregressive and moving average parts. 

(1 − B)d handles non-seasonal differencing, and (1 − 𝐵𝑠)𝐷 manages seasonal differencing. 

Here are the steps for modeling Seasonal Autoregressive Integrated Moving Average (SARIMA) [29, 30]: 

1. Identify the Model: Start by exploring the time series data to spot trends, patterns, and seasonal cycles. If the data in 

level origin is stationary, then use the SARMA model, and if the data needs differencing, then use the SARIMA model. 
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Next, use visual tools like the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots to 

help determine the right non-seasonal (p, d, q) and seasonal (P, D, Q) parameters. 

2. Estimate the Parameters: Once you’ve identified the model structure, estimate the model’s parameters using statistical 

techniques. This step involves fitting the SARIMA model to the data and finding the best coefficients that describe the 

observed patterns. 

3. Check the Model’s Fit: After fitting the model, evaluate how well it performs. Analyze the residuals (the differences 

between the model’s predictions and actual data); they should look like random "white noise" with no remaining 

patterns. If the residuals show structure or correlation, it’s a sign the model may need adjusting. 

4. Make Forecasts: Once the model checks out, use it to make predictions. Compare the forecasts to actual data to see 

how accurate they are. If the performance isn’t satisfactory, revisit the previous steps and tweak the model to improve 

its accuracy. 

Following these steps provides you with a structured, reliable way to build SARIMA models, making it easier to analyze 

time series data and capture those tricky seasonal patterns for better forecasting. 

 

2.3.2. Markov Chain Models 

The Markov Chain model is one of the stochastic models that utilizes a time series of discrete variables [9-12]. It is 

essential to conduct a reliable discharge analysis of the discharge's reliability before implementing the Markov Chain 

generation model using the Weibull method. The Weibull probability formula calculates the probability (after data has been 

sorted from largest to smallest) of the event being greater than the discharge value [10, 31, 32]. And is given below. 

𝑃 (𝑋 ≥ 𝑥)= 
𝑚𝑥

𝑛+1
           (2)                                                                                  

Figure 1 Ciberang Watershed research location (Office of Cidanau-Ciujung-Cidurian River Area BBWS-C3) 

P (X ≥ x) is the value of the probability occurrences of all events ‘X’ greater than or equal to data ‘x’, mx represents the 

ranking of data x after sorting from largest to smallest, and n denotes the total amount of data. 

The probability of data reliability from several data points is the probability value of an event where the value that occurs 

is equal to or above the data value. Furthermore, the calculated reliability is categorized as dry, normal, or wet discharge. 

After calculating the discharge reliability using the Weibull method, the discharge generation analysis is carried out using 

the Markov Chain method. In the Markov Chain process, the probability at a certain time is determined only from the events 

of the previous time [10, 11]. The formula of the Markov Chain model is given below [10, 11, 32, 33]: 

𝑞𝑖=𝑑𝑖+𝑒𝑖            (3) 

di represents the deterministic component and ei indicates the random component. 

The simplification of water discharge in Markov Chain models was carried out by categorizing it into three classes [17]. 

In this model (three-class Markov), a stochastic matrix that classifies the historical data into three classes: Dry discharge 

(represented by 0), Normal discharge (represented by 1), and Wet discharge (represented by 2), can be created monthly. The 

class intervals for each class division were obtained by dividing the probability curve of the distribution of the selected 

population into three equal parts, namely 0.333, 0.667, and 1. The guidelines’ trajectory was determined with the concept of 

planned discharge by examining the behavior of historical water discharge and subsequently determining the threshold for 

the magnitude of future water flow events [10, 11]. 

 

2.4. Statistical Analysis 

To assess the simulation discharge generation models, a comparison was conducted utilizing the value of correlation, 

MAPE [3-5, 27]. The correlation coefficient indicates the extent of association in regression analysis with a cause-and-effect 

relationship, ranging from 1 to -1, where 1 signifies a strong positive correlation, 0 denotes no correlation, and -1 indicates a 

strong negative correlation [3-5]. Meanwhile, MAPE, or Mean Absolute Percentage Error, is a way to measure how well a 

model’s predictions match reality, expressed as an easy-to-understand percentage. In hydrological modeling, it plays an 

important role in evaluating how accurately the model simulates phenomena such as river flow, rainfall, or water levels. 

Simply put, the lower the MAPE, the better the model’s performance. A low MAPE means the model’s predictions are close 

to the actual data, making it a reliable tool for identifying models that are underperforming or overfitted. In this study, each 

model's accuracy level was determined using the formula below [3-5, 34, 35]: 

 

𝒓 =
(𝒏)(∑ 𝒙𝒚)−(∑ 𝒙)(∑ 𝒚)

√(𝒏.∑ 𝒙𝟐−∑(𝒙)𝟐.(𝒏.∑ 𝒚𝟐−∑(𝒚)𝟐))

                          (6) 

                                                                              

 

𝑀𝐴𝑃𝐸 =
𝟏

𝒏
x∑ ⌈

𝑸𝒐𝒃𝒔−𝑸𝒎𝒐𝒅

𝑸𝒐𝒃𝒔
⌉𝒏

𝒊=𝟏                                   (7) 

 

MAPE < 10% → Excellent forecasting accuracy  

10% ≤ MAPE < 20% → Good forecasting accuracy 20% ≤ MAPE < 50% → Reasonable or Moderate forecasting accuracy  

MAPE ≥ 50% → Poor forecasting accuracy 

x represents the mean value of xi, y indicates the mean value of yi, MAPE stands for the average error rate, n denotes the 

Number of data, i symbolizes the month-I, Qobs represents the historical discharge, Qmod symbolizes the discharge models. 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/markov-chain


 
 

               International Journal of Innovative Research and Scientific Studies, 8(3) 2025, pages: 4176-4188
 

4182 

3. Result and Discussion 
3.1. Rainfall Analysis 

The rainfall data used in this study is the monthly average rainfall data from 1997-2023 of six stations in the Ciujung 

watershed, Karian. Figure 2 shows the trend of average rainfall from six rain gauge stations at the Ciujung-Karian watershed. 

Based on an assessment of the average rainfall as shown in Figure 4, it can be proven that this research area is a Monsoon 

zone type, with rainfall characteristics that have two peaks of rain concentrated in the rainy season (October to May), while 

rainfall occurs in the dry season (June to September). The recapitulation of the average rainfall from 1997 to 2023 can be 

seen in Table 2.  

 

 
Figure 3.  

The average monthly rainfall and regional rainfall at the observation locations. 

 
Table 2.  

Recapitulation of average rainfall (mm). 

Month P1 P2 P3 P4 P5 P6 

Jan 281 396 386 204 292 315 

Feb 272 358 332 201 271 277 

Mar 230 280 279 140 196 194 

Apr 239 274 247 118 207 214 

May 278 251 187 125 181 190 

Jun 204 176 137 94 121 123 

Jul 133 141 108 68 81 96 

Aug 124 101 96 38 68 77 

Sep 145 132 119 88 129 124 

Oct 201 206 177 123 174 166 

Nov 224 257 217 166 217 214 

Dec 255 262 287 193 223 221 

Average 216 236 214 130 180 184 

 

3.2. Water Sources Model 

Figure 4, Figure 5, Figure 6, depicts the simulation results of historical data discharge comparisons with Markov Chain, 

Autoregressive Moving-Average models SARIMA and Multiple Linear Regression (MLR) models' predictions. Each water 

source model has advantages; for example, the Markov Chain, Seasonal Autoregressive Integrated Moving-Average models 

SARIMA and Multiple Linear Regression (MLR) models can predict discharges in both river catchments and dams. The 

Markov Chain, SARIMA, and MLR models are also appropriate for generating discharge data and predicting future flow 

rates [3-5, 11, 26, 27]. 
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Figure 4. 

The simulation results of historic discharge compared to the Markov Chain models. 

 

 
Figure 5. 

The simulation results of historic discharge compared to the SARIMA. 

 

 
Figure 6. 

The simulation results of historic discharge compared to the MLR-1, MLR-2, MLR-3. 

 

3.2.1. Markov Chain Models 

In the Markov process, the probability at a certain time is determined only from previous events. The Markov Chain 

process is as follows [36]: 

 1. Data is sorted from smallest to largest. Calculate the probability value for each data point using the Weibull method 

(p=m/(N+1)) 

2. The cumulative probability for each month's data series is classified into three classes, namely with probability 

intervals as follows: 

• Class 0 = dry   

 p = 0 – 1/3 

• Class 1 = normal  

 p = 1/3– 2/3 

• Class 2 = wet   

 p = 2/3 – 1 

3. From the data range (dry, normal, wet), look for the average of the three results, namely dry, normal, and wet discharge. 

4. Next, a three-class first-order monthly transition matrix is created for dry, normal and wet monthly discharge. example of 

a monthly transition matrix for the month of February, Table 3. 

 

 

 
Table 3.  
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Class 3rd order monthly Markov Chain transition matrix (dry, normal and wet) Jan to Feb. 

Monthly discharge Jan Monthly discharge Feb 
 

0 1 2 
 

0 0.56 0.22 0.22 1.00 P0N 

1 0.22 0.22 0.56 1.00 PIN 

2 0.22 0.56 0.22 1.00 P2N  
1.00 1.00 1.00 3.00 PNN  
P0N P1N P2N PNN 

 

 

5. Next, perform monthly discharge data prediction based on the monthly probability of 3 classified categories that have 

been calculated. 

The value of the coefficient correlation between the historical discharge comparison and the estimated discharge 

simulation of the Markov Chain model is 63% (Figure 5). Based on the correlation value, the correlation value of the 

SARIMA forecast discharge with the generation discharge is a moderate relationship. It shows that this model is capable of 

predicting an increase or decrease in discharge of up to 63%. Based on the simulation of Markov Chain models, the MAPE 

values are 26%. The MAPE value in the SARIMA model is 25%, which shows reasonable or moderate forecasting accuracy. 

This shows that the model is good at predicting monthly discharge [3-5, 34, 35].  

The Markov Chain model can predict monthly average discharge because the model predicts discharge using the 

probability method of possible past discharges, which often appear to predict the future. Moreover, the discharge is classified 

into three classes: dry, normal, and wet, which makes the model effective in predicting data with uniform patterns but has 

limitations in forecasting extreme data. Extreme data can disrupt normal distribution, and the Markov Chain model is most 

effective for forecasting discharge when the data approximates a normal and uniform distribution [37]. 

 

3.2.2. Seasonal Autoregressive Integrated Moving Average (SARIMA) 

ARIMA is a way to estimate time series data stochastically. The ARIMA model represents three models, namely from 

Moeeni et al. [13], Yang et al. [14] and Kenyi and Yamamoto [15]:  

1. Autoregressive model (AR) 

2. Moving averages (MA) 

3. Autoregressive and moving average model (ARMA) 

SARIMA method, which was originally a development of the Box-Jenkins (ARIMA) method. The SARIMA model can 

overcome the seasonal pattern of a time period. Based on Figure 7 illustrates that the discharge data typically decreases in 

January each year and increases in the subsequent month, and this pattern repeats annually, reflecting the impact of 

seasonality, therefore, the ARIMA model is developed into the SARIMA model. Based on Figure 7, the Karian discharge 

data from 1997-2023 is stationary (Figure 7 and Table 3), therefore, there is no need for differencing.  If the data is stationary 

in the first difference, then modeling using ARMA (p,q) d shows the degree of stationarity. Based on plotting data and 

stationary tests, stationary discharge data at the origin level, the model chosen is the ARMA model [26-28]: 

 

 
Figure 7. 

Karian input discharge plots (1997-2023). 

 

The stationary test uses the Dickey-Fuller method with the following hypothesis and results [38]: 

H0: data is not stationary 

H1: stationary data 

P-value < 0.05 → reject H0 →Conclusion: data is stationary Table 4. 

 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/correlation-coefficient
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Table 4.  

Stationary Test. 

Level Dickey-Fuller P-Value Conclusion 

Origin -10.709 0.01 Stationary 

 

The next stage after the stationary test is to estimate the model. This will determine the initial estimated values for the 

parameters of the ARMA model based on the autocorrelation correlogram (ACF) and partial autocorrelation correlogram 

(PACF) patterns. From the results of the model selection, the best model was then re-selected, using statistical tests [26-28]. 

From the ACF, PACF, and statistical test results, the best model was SARIMA (2,0,2) (2,1,0) with a drift model. For 

this reason, the Karian input discharge forecast uses the SARIMA (2,0,2) (2,1,0) with a drift model. After obtaining the best 

model, a prediction of Karian's input discharge from 1997 to 2023 was carried out, and then calibration was performed using 

the historic data (Figure 6) [26-28]. 

Based on the calibration results of the SARIMA input discharge forecast and historic data, the correlation value is 65%. 

Based on the correlation value, the correlation of the SARIMA forecast discharge with generation discharge has a moderate 

relationship. This shows that this model is capable of predicting an increase or decrease in discharge of up to 65%. The 

MAPE value in the SARIMA model is 25%, which shows reasonable or moderate forecasting accuracy. This indicates that 

the model is good at predicting monthly discharge [3-5, 34, 35]. 

A SARIMA model works well for predicting discharge data like river flow because it captures both short-term 

fluctuations and seasonal patterns that naturally occur in this kind of data. Discharge often follows a seasonal rhythm; for 

example, rivers might swell during rainy seasons and then slow down in drier months. SARIMA models are built to handle 

this by including seasonal components (P, D, Q, s), which recognize and adjust for these repeating cycles, whether they 

happen daily, monthly, or yearly. By combining trend detection, seasonal behavior, and random variations, SARIMA 

becomes a powerful tool for understanding and forecasting discharge patterns, even when the data is noisy or unpredictable 

[13-15, 26-28]. 

 

3.3. Multiple Linear Regression (MLR) Model 

In the Multiple Linear Regression (MLR) model, there are various model configurations. The selection of the forecasting 

discharge model is conducted using several variations of the quaternary MLR model. This approach is based on previous 

studies showing that the four-variable (quaternary) variation produces a higher correlation value compared to the two-variable 

(binary) and three-variable (ternary) variations. Moreover, using more than four variables tends to yield correlation values 

that are not significantly different from those produced by the four-variable variation [3-5, 17, 18]. 

For the quaternary MLR variations in this study, three variations were created: MLR-1 variation of Q4 (Q4t-1 P1t-1 P4t-

1); MLR-2 variation of Q4 (Q4t-1 Q4t-2 P1t-1). MLR-3 variation of Q4 (Q4t-1 Q4t-2 P4t-1). 

The selection of these variations is based on the hydrological components present in the upstream area of the Karian 

Reservoir, specifically P1, P4, and Q4 (Figure 1). This approach was chosen because using hydrological components from 

the downstream area of the Karian Reservoir would not align with the characteristics of Karian’s input discharge. This 

discrepancy occurs due to changes in hydrological characteristics downstream of the Karian Reservoir, where the flow has 

been influenced by the reservoir itself. As a result, the downstream hydrological characteristics differ from those found in 

the upstream components of the Karian Reservoir. 

Additionally, the model variations are also based on differences in the time periods of rainfall and discharge recordings. 

There are time step variations of t-1, which predict the value for period t, and t-2 time steps, which predict the discharge 

value for period t. This approach aims to evaluate how strongly the time factor influences future prediction results [3-5]. 

The MLR-1 model (Figure 7) has a correlation value of 76%, it shows that the relationship between the Q4 MLR-1 

forecast discharge and historic data has a high correlation. Meanwhile, the MAPE value in the MLR-2 is 19%, which shows 

good forecasting accuracy. This shows that the model is good at predicting monthly discharge [3-5, 34, 35]. 

The MLR-1 model is effective at predicting discharge; this is because the MLR-1 model Q4 (Q4t-1P1t-1P4t-1) uses t-1 

month rainfall data and t-1 month discharge data. The variables t-1 month rainfall and t-1 month discharge have a strong 

correlation with t month historic discharge data. This is because the rainfall in the previous month (t-1) becomes the discharge 

in month t, and the relationship between discharge t and discharge t-1 is also strong. The strong correlation between a river's 

discharge in the current month (Qₜ) and its discharge in the previous month (Qₜ₋₁) can be attributed to the inherent persistence 

in hydrological systems. This persistence arises because various hydrological processes—such as groundwater contributions, 

soil moisture retention, and basin storage effects—exhibit temporal continuity, causing river discharge to be autocorrelated 

over time. 

A study examining river discharge variability across major global basins highlighted that the variations in river discharge 

are influenced by climate and the nature of the Earth's surface and subsurface. These factors contribute to the temporal 

persistence observed in discharge records, leading to significant correlations between consecutive monthly discharges. These 

factors result in a good discharge forecast [2, 26]. 

The MLR-2 model Figure 7 it has a correlation value of 75%, which shows that the relationship between the Q4 MLR-

2 forecast discharge and historic data has a high correlation. Meanwhile, the MAPE value in the MLR-2 is 22%, indicating 

reasonable or moderate forecasting accuracy. This demonstrates that the model is effective at predicting monthly discharge 

[3-5, 34, 35].  

The MLR-2 is good at predicting monthly average discharge, this is because the Q4 MLR-2 uses variables Karian 

previous month discharge time step t-1(Qt- 1) and t-2(Qt-2), also using Variable rainfall the previous month time step t-1 
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(P1t-1). The result of the model correlation of historic discharge shows a strong correlation with the predicted discharge. 

Because the rainfall in the previous month t-1 becomes the discharge in month t, apart from that, there is a strong relationship 

between the discharge in Qt-2 and the predicted discharge Qt, but not as strong as the relationship between Qₜ₋₁ and Qₜ. 

Furthermore, the position also determines the strength of the relationship. For rainfall P1, the position is further away than 

with P4 on the Karian reservoir, so that the value of MAPE with P1 is a bit different from the MAPE with P4 [3-5]. 

The MLR-3 model (Figure 7) has a correlation value of 75%. It can be seen that the relationship between the Q4 MLR-

3 forecast discharge and historic data has a strong correlation. The MAPE value in the Q4 MLR-3 it shows reasonable or 

moderate forecasting accuracy. This indicates that the model is good at predicting monthly discharge [3-5, 34, 35].  

The MLR-2 is good at predicting monthly average discharge, this is because the Q4 MLR-2 uses variables Karian's 

previous month discharge time step t-1(Qt- 1) and t-2(Qt-2), also using Variable rainfall the previous month time step t-1 

(P4t-1). The result of the model correlation of historic discharge shows a strong correlation with the predicted discharge. 

Because the rainfall in the previous month t-1 becomes the discharge in month t, apart from that, there is a strong relationship 

between the discharge in Qt-2 and the predicted discharge Qt, but not as strong as the relationship between Qₜ₋₁ and Qₜ. 

Furthermore, the position also determines the strength of the relationship. For rainfall P4, the position is closer to Karian 

Reservoir than P4 so the value of MAPE with P4 is a bit different than MAPE with P1 [3-5]. 

 

4. Model Comparison 
To determine the selected forecast discharge, a statistical test comparison of the Markov Chain forecast model, SARIMA, 

and the quaternary MLR model is carried out in Table 5. 

 
Table 5.  

Comparison of Karian input discharge forecast models (Q4) Year (1997-2023). 

   CHAIN-MARKOV SARIMA MLR 

     1 2 3 

Accuracy R2 0.63 0.66 0.76 0.75 0.75 

Error MAPE 0.26 0.25 0.19 0.22 0.21 

 

Based on Table 5, it is found that the quaternary MLR-1 model Q4(Q4t-1P1t-1P4t-1) is the most representative model in 

forecasting Karian input discharge. This is represented by the correlation value with historic data, which is 76% and has the 

smallest model error value. It indicates that the MLR-1 model is a statistically nuanced model that is suitable for random and 

stochastic changes in hydrological components  [3-5, 34, 35]. 

 

5. Conclusion  
Based on the results, the Markov Chain, SARIMA, and MLR models all have an accuracy level of probability in 

increasing or decreasing discharge ranging from above 63% to 76%. This is also evidenced by the results of the correlation 

obtained using the three models, which produced a value in the range of 0.6 to 1, indicating a significant relationship between 

each model. Therefore, these models are suitable alternatives for forecasting discharge. The simulation results from the 

calibration of the water source model show that the largest correlation, ranging from 75% to 76%, was obtained using the 

MLR model, followed by the SARIMA and Markov Chain models with correlation values of 66% and 63%, respectively. 

The least average error rate (MAPE) between 19% and 22% was obtained using the MLR model, while the other models 

produced values of 25% and 26%. Therefore, the most representative water source model for discharge forecasts, and the 

closest to the historical series of discharges, is the MLR, followed by the SARIMA model and the Markov Chain model. In 

comparison to other models, the MLR-1 model produced the largest coefficient correlation of 0.76 or 76%. This shows that 

this model is capable of forecasting an increase or decrease in discharge of up to 76%. Therefore, the MLR-1 model is the 

best model that can serve as the basis for modeling the optimal management of water sources in the Ciberang-Ciujung 

watershed [3-5, 34, 35]. 

This study strengthens the argument that the comparison of the three models (Markov Chain, SARIMA, and MLR) with 

a statistical approach (calibration criteria decomposition) can help improve our understanding of model performance. This 

approach can assist in the design of a diagnostically robust evaluation strategy that supports the proper identification of 

hydrologically consistent models. With the comparison of the three models, it is hoped that the performance of the most 

representative model can be used as a basis for modeling analysis, especially to predict discharge data according to the 

conditions of the research area. The most representative alternative model in this study will be used as the basis for modeling 

discharge predictions and utilized to achieve optimal reservoir conceptualization. 

 

References 
[1] F. Li, G. Ma, C. Ju, S. Chen, and W. Huang, "Data-driven forecasting framework for daily reservoir inflow time series considering 

the flood peaks based on multi-head attention mechanism," Journal of Hydrology, vol. 645, p. 132197, 2024.  

https://doi.org/10.1016/j.jhydrol.2024.132197 

[2] A. Gupta and A. Kumar, "Two-step daily reservoir inflow prediction using ARIMA-machine learning and ensemble models," 

Journal of Hydro-environment Research, vol. 45, pp. 39–52, 2022.  https://doi.org/10.1016/j.jher.2022.05.001 

[3] A. Bashir, M. A. Shehzad, I. Hussain, M. I. A. Rehmani, and S. H. Bhatti, "Reservoir inflow prediction by ensembling wavelet 

and bootstrap techniques to multiple linear regression model," Water Resources Management, vol. 33, no. 15, pp. 5121-5136, 

2019.  

https://doi.org/10.1016/j.jhydrol.2024.132197
https://doi.org/10.1016/j.jher.2022.05.001


 
 

               International Journal of Innovative Research and Scientific Studies, 8(3) 2025, pages: 4176-4188
 

4187 

[4] A. M. Mihel, N. Krvavica, and J. Lerga, "Regression-based machine learning approaches for estimating discharge from water 

levels in microtidal rivers," Journal of Hydrology, vol. 646, p. 132276, 2025.  

[5] T. Jannah, Diyanti, and B. Santosa, "Flood discharge prediction by multiple linear regression method: Case study: Ciliwung 

watershed – cisadane," Journal of Multidisciplinary Engineering Science Studies, vol. 10, no. 4, pp. 569–578, 2024.  

[6] M. C. Maniquiz, S. Lee, and L.-H. Kim, "Multiple linear regression models of urban runoff pollutant load and event mean 

concentration considering rainfall variables," Journal of Environmental Sciences, vol. 22, no. 6, pp. 946-952, 2010.  

https://doi.org/10.1016/S1001-0742(09)60203-5 

[7] T. R. Lathrop, A. R. Bunch, and M. S. Downhour, "Regression models for estimating sediment and nutrient concentrations and 

loads at the Kankakee River, Shelby, Indiana, December 2015 through may 2018," US Geological Survey. 

https://doi.org/10.3133/sir20195005, 2328-0328, 2019. 

[8] B. Ermias and V. Vishal, "Application of artificial intelligence for prediction of swelling potential of clay-rich soils," 

Geotechnical and Geological Engineering, vol. 38, pp. 6189-6205, 2020.  https://doi.org/10.1007/s10706-020-01427-x 

[9] M. M. Dorafshan, M. H. Golmohammadi, K. Asghari, and C. De Michele, "A novel fuzzified markov chain approach to model 

monthly river discharge," Water Resources Management, pp. 1-21, 2024.  

[10] M. Jayanti, A. Sabar, H. D. Ariesyady, M. Marselina, and M. Qadafi, "A comparison of three water discharge forecasting models 

for monsoon climate region: A case study in cimanuk-jatigede watershed Indonesia," Water Cycle, vol. 4, pp. 17-25, 2023.  

https://doi.org/10.1016/j.watcyc.2023.01.002 

[11] M. Jayanti, D. Marganingrum, H. Santoso, A. Sabar, H. D. Ariesyady, and M. Mariana, "The operation optimization of 

multipurpose reservoir between arima, continuous, and chain markov model on jatigede reservoir, Indonesia," Continuous, and 

Chain Markov Model on Jatigede Reservoir, Indonesia, vol. 5, pp. 30–45, 2024.  https://doi.org/10.1016/j.watcyc.2024.01.003 

[12] H. Bonakdari, A. H. Zaji, A. D. Binns, and B. Gharabaghi, "Integrated Markov chains and uncertainty analysis techniques to 

more accurately forecast floods using satellite signals," Journal of Hydrology, vol. 572, pp. 75-95, 2019.  

https://doi.org/10.1016/j.jhydrol.2019.02.027 

[13] H. Moeeni, H. Bonakdari, and I. Ebtehaj, "Monthly reservoir inflow forecasting using a new hybrid SARIMA genetic 

programming approach," Journal of Earth System Science, vol. 126, pp. 1-13, 2017.  https://doi.org/10.1007/s12040-017-0798-

y 

[14] Z. Yang, D. Dong, Y. Chen, and R. Wang, "Water inflow forecasting based on visual modflow and gs-sarima-lstm methods," 

Water, vol. 16, no. 19, p. 2749, 2024.  https://doi.org/10.3390/w16192749 

[15] M. G. S. Kenyi and K. Yamamoto, "A hybrid SARIMA-Prophet model for predicting historical streamflow time-series of the 

Sobat River in South Sudan," Discover Applied Sciences, vol. 6, no. 9, p. 457, 2024.  https://doi.org/10.1007/s42452-024-06083-

x 

[16] Korean International Cooperation Agency (KOICA), "Design report Korea rural community & agriculture corporation in 

association with korea water resources corporation republic of Korea Korea international cooperation agency," Feasibility Study 

and Detailed Design of the Karian Dam Project, 2016.  

[17] S. Kamwaga, D. M. Mulungu, and P. Valimba, "Assessment of empirical and regression methods for infilling missing streamflow 

data in Little Ruaha catchment Tanzania," Physics and Chemistry of the Earth, Parts A/B/C, vol. 106, pp. 17-28, 2018.  

[18] L. V. Duarte, K. T. M. Formiga, and V. A. F. Costa, "Comparison of methods for filling daily and monthly rainfall missing data: 

Statistical models or imputation of satellite retrievals?," Water, vol. 14, no. 19, p. 3144, 2022.  

[19] A. O. Eruola, G. C. Ufoegbune, A. O. Eruola, J. A. Awomeso, and S. A. Abhulimen, "Determination of areal rainfall using 

estimation methods in a tropical wet and dry climate," Journal of Hydrology, vol. 37, pp. 079-082, 2015.  

[20] J. B. Granato, "Development of regression equations to estimate flow durations and low-flow frequency statistics in New 

Hampshire streams," U.S. Geological Survey, Water-Resources Investigations Report 02-4298, 2003. 

[21] J. H. Cho and J. H. Lee, "Multiple linear regression models for predicting nonpoint-source pollutant discharge from a highland 

agricultural region," Water, vol. 10, no. 9, p. 1156, 2018.  https://doi.org/10.3390/w10091156 

[22] A. Sabar, "Directorate of water and irrigation," Global Trends in Sustainable Water Resources Infrastructure Development in 

the Context of Expert Discussion on the Formulation of Indonesia's Eco-Efficient Water Infrastructure Policy, 2002.  

[23] M. Marselina, A. Sabar, I. Rachmatiah Siti Salami., and M. D., "Water discharge forecast model in the context of optimizing the 

management of the saguling-kaskade citarum reservoir," Theoretical Journal, vol. 24, no. 1, 2017.  

[24] L. A. Dar, "Rainfall-runoff modeling using multiple linear regression technique," International Journal for Research in Applied 

Sciences, Engineering and Technology, vol. 5, no. 7, pp. 214-218, 2017.  

[25] S. Patel, M. Hardaha, M. K. Seetpal, and K. Madankar, "Multiple linear regression model for stream flow estimation of 

Wainganga River," American Journal of Water Science and Engineering, vol. 2, no. 1, pp. 1-5, 2016.  

[26] A. Eshragh, B. Ganim, T. Perkins, and K. Bandara, "The importance of environmental factors in forecasting australian power 

demand," Environmental Modeling & Assessment, vol. 27, no. 1, pp. 1-11, 2022.  

[27] U. H. Perez-Guerra et al., "Seasonal autoregressive integrated moving average (SARIMA) time-series model for milk production 

forecasting in pasture-based dairy cows in the Andean highlands," Plos one, vol. 18, no. 11, p. e0288849, 2023.  

[28] S. Lee and H. K. Kim, "Adsas: Comprehensive real-time anomaly detection system in international workshop on information 

security applications." Cham: Springer International Publishing, 2018, pp. 29-41. 

[29] X. Chang, M. Gao, Y. Wang, and X. Hou, "Seasonal autoregressive integrated moving average (SARIMA) model for 

precipitation time series," Journal of Mathematics and Statistics, vol. 8, no. 4, pp. 500–505, 2012.  

[30] H. A. Mombeni, S. Rezaei, S. Nadarajah, and M. Emami, "Estimation of water demand in Iran based on SARIMA models," 

Environmental Modeling & Assessment, vol. 18, pp. 559-565, 2013.  

[31] P. Narayanan, A. Basistha, S. Sarkar, and S. Kamna, "Trend analysis and ARIMA modelling of pre-monsoon rainfall data for 

western India," Comptes Rendus Geoscience, vol. 345, no. 1, pp. 22-27, 2013.  https://doi.org/10.1016/j.crte.2012.12.001 

[32] H. Du, Z. Zhao, and H. Xue, "ARIMA-M: A new model for daily water consumption prediction based on the autoregressive 

integrated moving average model and the Markov chain error correction," Water, vol. 12, no. 3, p. 760, 2020.  

https://doi:10.3390/w12030760 

[33] W. Wang, Y. Du, K. Chau, H. Chen, C. Liu, and Q. Ma, "A comparison of BPNN, GMDH, and ARIMA for monthly rainfall 

forecasting based on wavelet packet decomposition," Water, vol. 13, no. 20, p. 2871, 2021.  

https://doi.org/10.1016/S1001-0742(09)60203-5
https://doi.org/10.3133/sir20195005
https://doi.org/10.1007/s10706-020-01427-x
https://doi.org/10.1016/j.watcyc.2023.01.002
https://doi.org/10.1016/j.watcyc.2024.01.003
https://doi.org/10.1016/j.jhydrol.2019.02.027
https://doi.org/10.1007/s12040-017-0798-y
https://doi.org/10.1007/s12040-017-0798-y
https://doi.org/10.3390/w16192749
https://doi.org/10.1007/s42452-024-06083-x
https://doi.org/10.1007/s42452-024-06083-x
https://doi.org/10.3390/w10091156
https://doi.org/10.1016/j.crte.2012.12.001
https://doi:10.3390/w12030760


 
 

               International Journal of Innovative Research and Scientific Studies, 8(3) 2025, pages: 4176-4188
 

4188 

[34] S. Prion and K. A. Haerling, "Making sense of methods and measurement: Pearson product-moment correlation coefficient," 

Clinical Simulation in Nursing, vol. 10, no. 11, pp. 587-588, 2014.  

[35] A. De Myttenaere, B. Golden, B. Le Grand, and F. Rossi, "Mean absolute percentage error for regression models," 

Neurocomputing, vol. 192, pp. 38-48, 2016.  

[36] D. Suryadarma, A. Suryahadi, and S. Sumarto, "Sectoral growth and job creation: Evidence from Indonesia," Journal of 

International Development, vol. 25, no. 4, pp. 549-561, 2013.  

[37] M. Goyal and S. K. Bhagat, "A novel fuzzified markov chain approach to model monthly river discharge," Water Resources 

Management, vol. 38, no. 2, pp. 511–527, 2024.  

[38] Z. Guo, "Research on the augmented dickey-fuller test for predicting stock prices and returns," in Proceedings of the 2023 

International Conference on Advanced Education, Management, and Social Science (AEMSS), pp. 123-130, 2023.  
 

 


