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Abstract 

Vehicular Ad-hoc Networks (VANETs) are crucial for enabling real-time communication in intelligent transportation 

systems. While network availability and safety-critical services cannot be compromised under normal circumstances, they 

are highly vulnerable to jamming attacks. Jamming detection through traditional machine learning models is mainly static, 

and models are trained offline, making them prone to adaptation when facing various jamming patterns or adversarial updates. 

In this work, we introduce a robust and adaptive mechanism featuring Generative Adversarial Networks (GANs) for realistic 

attack simulation, a hybrid Convolutional Neural Network–Random Forest (CNN-RF) classifier for robust detection, and an 

online learning process with concept drift adaptation. Under the augmentation of the GAN module, adversarial and zero-day 

jamming behaviors are generated as new samples to expand the dataset; at the same time, the classifier is trained in an 

adversarial manner to ensure performance without damage under perturbation. Experimental results on a real-world DSRC 

vehicular intelligent dataset show that the proposed model achieves a 93.4% F1 score while reducing inference latency by 

44.7% and attaining 92.3% model accuracy with over 10% drift—outperforming all other state-of-the-art baselines by a 

significant margin. These results demonstrate the potential of the model for real-time resilience and adversarial deployment 

within dynamic VANET settings. 
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1. Introduction 

Vehicular Ad-hoc Networks (VANETs) have recently emerged as a cornerstone of intelligent transportation systems 

(ITS), facilitating V2V (vehicle-to-vehicle) and V2I (vehicle-to-infrastructure) intelligence that provides safety, enhances 

traffic flow, and supports the development of autonomous driving systems [1-4]. However, given their open and wireless 

nature, VANETs have historically high exposure to numerous security threats, particularly jamming attacks, which are 

intentional disruptions of communication channels with the intent to degrade the availability of service and, in the worst case, 

to create catastrophic road consequences [5-10]. 

VANETs typically employ traditional jamming detection methods based on statistical thresholds or static machine 

learning (ML) classifiers trained on historical data [11-13]. Although these models can yield good results in controlled 

environments, they are inherently limited in dynamic real-world deployments where non-stationary traffic, evolving attack 

types, and concept drift are commonplace [14-17]. Static models do not generalize well to adversarial manipulations or novel 

jamming strategies that were not encountered during training, resulting in significant performance degradation [18-20]. 

This recent work El-Shafai et al. [21], proposed a high-accuracy ensemble classifier based on the combination of Random 

Forest, Extra Trees, and CNN models for the detection of jamming. While the proposed model is effective under fixed 

settings, it suffers when data distributions change, as its model must retrain from scratch whenever data changes. Furthermore, 

it is susceptible to adversarial perturbations small engineered modifications to inputs that result in classification failure. It 

introduces a crucial security hole in fast and real-time VANET settings where attacks are higher-level and robust. 

To overcome these shortcomings, we propose a novel and adaptive AI framework for jamming detection in the context 

of VANETs. Our approach combines three new innovations: It uses Generative Adversarial Networks (GANs) [22] to 

enhance the training data through the generation of varying, realistic, and adversarially perturbed jamming patterns. This 

method combines deep feature extraction with ensemble-based decision robustness using a hybrid CNN–RF classifier. 

Adaptive Drift Detection for Online Learning: The system is capable of continuously evolving because we do not need to 

retrain from scratch. 

Comprehensive analysis of the DSRC vehicular dataset with modifications shows that the proposed model provides 

significant improvements over classical static approaches with low latency and high accuracy throughput even during the 

existing adversarial drift. In addition, its lightweight footprint makes it suitable for deployment on edge devices like OBUs 

and RSUs. This paper makes the following main contributions: 

• GAN-enhanced simulation behavior of advanced and zero-day jamming attacks based on a novel training pipeline. 

• A hybrid classifier architecture (CNN + Random Forest) that is robust and can generalize under concept drift and 

adversarial manipulation. 

• Contributions include a comprehensive implementation and evaluation across high-performance to edge hardware, 

proving real-time viability and robustness in potentially varying VANET settings. 

The rest of this paper is structured as follows. In Section 2, a summary of recent works on jamming detection in VANETs, 

adversarial machine learning, and GAN-based augmentation methods is presented. Section 3 describes the specific 

methodology, including stakeholders for dataset preparation, GAN model configuration, classifier design, and the adversarial 

testing procedure. The experimental setup is covered in Section 4, which includes dataset setups, implementations and 

configurations, hardware specifications, and evaluation metrics. Section 5 presents and discusses the experimental results, 

focusing on detection accuracy, drift handling, adversarial robustness, and efficiency relative to baseline models. Lastly, 

Section 6 concludes the paper and provides directions for future work that includes multimodal attack simulation, federated 

learning extension, and real-world deployment scenarios. 

 

2. Related Work 
The security concerns in Vehicular Ad-Hoc Networks (VANETs) due to jamming attacks are increasing, since the 

operation of vehicles and infrastructure depends on reliable wireless communication [23-27]. This is a classic rule or 

statistical-based detection using metrics such as signal strength, PDR, and channel occupancy [13, 28-31]. While these 

techniques serve well for known attacks, they fail with dynamic mobility and evolving adversarial behaviors [32-36]. 

A number of machine learning (ML) and deep learning (DL) methods have been proposed to increase detection accuracy. 

El-Shafai et al. [21] considered a static ensemble of Random Forest (RF), Extra Trees (ET), and Convolutional Neural 

Networks (CNNs) that achieved excellent accuracy on simulated jamming datasets. Their model, however, was trained 

offline, which has no online learning and is unable to adapt to concept drift, thus being less effective in non-stationary 

environments. 

Patel et al. [37] integrated Explainable AI (XAI) techniques within a jamming detection pipeline to particularly examine 

key contributing features towards the detection. While providing transparency, the model remained vulnerable to adversarial 

drift or unknown attack variants (more prevalent in open wireless contexts, e.g., in Vehicle Area Networks, VANETs). 

Contrary to LeNet features, we cannot directly implement the above B in other flow operators without considering the 

formless flow. 

Recent work in adversarial machine learning has shed light on the fragility of ML models to small, purposeful 

perturbations [38-40]. Non-robustly trained models are susceptible to attack algorithms, such as the Fast Gradient Sign 

Method (FGSM) attack and Projected Gradient Descent (PGD) attack, which can drastically alter performance [41-43]. 

Adversarial training techniques have thus been developed to counter this when learning, intermingling perturbed 

examples. Works such as Biggio et al. [44] and Kurakin et al. [45] laid some early groundwork for adversarial defenses. 
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However, their methods were mainly for the image domains and not implemented in security-critical systems such as the 

VANET in real time. 

Moreover, concept drift is a never-ending challenge in VANET security as traffic patterns and attack strategies change 

quickly. Some online learning techniques using Hoeffding Trees and Adaptive Sliding Windows have been proposed [46, 

47] but on their own, they can only be applied in a limited capacity without having adversarial awareness or suffering from 

feature adaptation. 

Generative Adversarial Networks (GANs) have been popularly applied to cybersecurity problems because of their ability 

to mimic rare and complex attack dynamics. Al-Qatf et al. In traditional networks, the study by Al-Qatf et al. [48] applied 

GANs to augment intrusion detection datasets with synthetic data, demonstrating that synthetic data can enhance 

generalization. Similarly, Rahman et al. [49] used GANs for IoT traffic anomaly detection. 

But their efforts did not target wireless jamming or adversarial drift. The application of GANs is still limited in the 

VANET domain. This is the first use of a conditional GAN in a VANET jamming detection pipeline to achieve adversarial 

augmentation, as far as we know, along with a hybrid classifier and adaptive learning. While El-Shafai et al. [21] proposed 

an ensemble classifier for high-accuracy jamming detection in VANETs, this model is partially but essentially constrained 

with regard to its offline characteristics, absence of online retraining, and inadaptability to concept drift. Their static strategies 

perform poorly against evolving traffic environments and cannot generalize to adversarially perturbed or unseen jamming 

attacks. On the other hand, in the proposed model, we adapt an online learning framework by integrating the GAN-generated 

adversarial samples to adapt on the fly, which increases detection speed and robustness to drift, along with generalization for 

previously unseen attacks. Thus, the transition from static classification to dynamic, active intelligence represents an 

important step forward for both secure and usable VANET intelligent systems. 

 

 
Figure 1. 

Data Preparation Pipeline Diagram. 

 

3. Methodology 
The fundamental goal of the proposed framework is to improve the robustness and generalization ability of jamming 

detection models in VANETs by training such models on a more extensive and challenging set of attack patterns, with a 

significant portion of them being previously unseen attacks generated synthetically by using adversarial techniques. This is 

accomplished by leveraging GANs to simulate advanced jamming behaviors and subsequently employing a hybrid classifier 

that mitigates adversarial efforts and generalizes to novel, unseen attacks. 

 

3.1. Dataset Preparation and Feature Selection 

Hence, we train and evaluate on both real and synthetically generated data to build a strong and generalizable detection 

model. Such a framework would guarantee that all the known patterns of jamming attacks are used to teach the classifier 

while incorporating some unknown attacks to provide it insights in adversarial and non-stationary environments. 

 

3.1.1. Real DSRC Vehicular Communication Dataset 

Real-world baseline data is obtained from the DSRC Vehicle Communication Dataset, which is a well-known benchmark 

for VANET research, as shown in Figure 1. The dataset generates DSRC-based V2V and V2I communications that mimic 

normal behavior and various types of jamming attacks under diverse mobility conditions. Each data sample includes: 

• Signal Quality: RSSI, SNR, BER 

• Packet Transmission Performance Metrics: Packet Delivery Ratio, Packet Loss Rate, Delay, and Jitter 

• Temporal Features: Inter-arrival time, Channel busy time 
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• Contextual Parameters: Vehicle speed, node density, communication channel ID 

In order to achieve equal training, the aforementioned dataset is divided into three classes: Normal, Known Jamming, 

and Synthetic Adversarial Attacks (details are provided in Section IV-B). 

 

3.1.2. Preprocessing and Cleaning 

Before training, we perform the following preprocessing steps on our dataset: 

• Handling of missing valuesRemove all null/corrupt entries 

• Normalization: All numerical features are normalized into [0, 1] using the Min-Max normalization process, which is 

beneficial for stabilizing the training of the GAN and increasing the convergence of the classifier. 

• Noise filtering: Outlier values (i.e., unrealistically low PDR or negative RSSI) are clipped to domain-specific 

thresholds. 

• Temporal Dimension Transformation: The features are categorized into a constant size of temporal windows to model 

the sequential behavior of vehicular communication for CNN input. 

 

3.1.3. Feature Selection Strategy 

We use a two-stage feature selection process to reduce dimensionality and increase classifier interpretability: 

• Stage 1: Mutual Information-based Filter: Each feature is assigned a score based on its mutual information with respect 

to the target label (jamming class). Features that produce low information gain (that is, below a threshold, typically 

set to 0.01) are discarded. 

• Stage 2: Random Forest Based on Wrapper Approach: The Random Forest classifier, with a baseline trained on a 

filtered feature set, quantifies the importance of individual features as the mean decrease in Gini impurity across the 

decision trees. Keep the top-ranked features for GAN training and robust model input. 

The features selected finally include 14 key features, such as RSSI variance, degradation of PDR, delay variation, and 

channel occupancy, which have been shown empirically to correlate well with jamming activity. 

 

3.2. GAN Architecture for Jamming Simulation 

In particular, we use a Generative Adversarial Network (GAN) to generate synthetic yet realistic jamming samples that 

can simulate future, unseen, and adaptive jamming attacks, i.e., the new jammers that are outside the training dataset and can 

still make good predictions using the classifier. This module aims to increase the variability of training data by generating 

new instances of jamming behavior not captured in traditional datasets. 

 

 
Figure 2. 

Flow Diagram of GAN architecture. 

 

3.2.1. Overview 

The GAN comprises two neural networks: a generator G and a discriminator D that are trained in adversarial competition. 

The generator generates the real-looking jamming feature vectors, and the discriminator returns whether they are real or 

synthetic. We adopt an architecture of conditional GAN (cGAN) in which both G and D are conditioned on the condition 

vector c that represents the jamming type (e.g., constant, random, reactive). 
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3.2.2. Generator Network 

We feed the generator a noise vector z ∼ N(0,1) concatenated with the condition vector c. There are 3 fully connected 

layers: 

• Input Layer: Input [z|c] vector. 

• Hidden Layers: Two dense layers with LeakyReLU and batch normalization. 

• Output Layer: This layer gives an output feature vector matching the dimensionality of the VANET features (e.g., 14 

features). 

 

3.2.3. Discriminator Network 

The discriminator is designed as a binary classifier: 

• The input: A concatenation of a real/synthetic feature vector with condition vector c. 

• Architecture: Use two dense layers with dropout for regularization. 

 

 
Figure 3. 

Diagram of CNN + Random Forest Hybrid Classifier Architecture. 

 

• Output: 1 sigmoid neuron for real/fake classification. 

The training loss is Wasserstein GAN with gradient penalty (WGAN-GP), which it improves the stability and mode 

collapse. 

 

3.2.4. Training Setup 

• Epochs: 5000 with early stopping. 

• Batch Size: 128 

• Optimizer: Adam, LR = 0.0002, β1 = 0.5 

• Noise Dimension: d = 100 

• Condition Encoding: One-hot encoding for 4 types of jamming 

The class consistency metrics, including classification confidence, cosine similarity, and Jensen-Shannon divergence, 

are used to assess generation quality. 

 

3.2.5. Training Pipeline Integration 

The GAN generates synthetically augmented dataset which consists of: 

• The communication data in the real world (regular and jamming) 

• GAN-generated adversarial jamming feature vectors 

 

3.3. Robust Classifier Construction 

To efficiently identify both normal and malicious jamming attacks, we propose a hybrid classification model that fuses 

the deep feature extraction ability of a Convolutional Neural Network (CNN) with the generalization power and 

interpretability of a Random Forest (RF) ensemble, as shown in Figure 3. The architecture is trained on the augmented dataset 

produced by the GAN module to allow the model to learn from diverse jamming behaviors. 

 

3.3.1. Convolutional Neural Network Feature Extractor 

In the CNN module, the model attempts to learn the abstract spatial features from the temporal and signal-based input 

data. The data is then aggregated into fixed temporal windows and passed through a series of convolutional layers (with max 

pooling and batch normalization). 

• Input: Feature matrices of shape (T × F) where T is time steps and F is feature count (i.e., 14) 

• Architecture: 
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• Conv1D Layer (filters=64, kernel size=3) – ReLU activation + MaxPooling 

• Conv1D Layer (filters = 128, kernel size= 3) 

• Global Average Pooling 

• Output: 1D embedding vector 

This embedding is then flattened to act as an input to the second classifier. 

3.3.2. Random Forest Regressor 

Then, the final classification is performed by RF, which is trained on feature embeddings extracted from CNN. RF is selected 

due to its: 

• Strong resistance to overfitting 

• Feature importance analysis support 

• Better generalization on mixed (real + synthetic) datasets 

For our classifier, we use an ensemble of 100 trees with Gini impurity and a maximum depth that has been empirically 

tuned to ensure the optimal trade-off between accuracy and inference time. 

 

3.3.3. Adversarial Training 

To ensure robustness, we impose adversarial training schemes in the optimization of the model. Specifically, we: 

• Add perturbed examples in training via FGSM (Fast Gradient Sign Method) 

• Simulate adversarial drift by combining clean and adversarial examples in each batch. Apply dropout and L2 

regularization to avoid overfitting to synthetic patterns. 

The two-tiered structure that encompasses deep representation learning and decision-oriented architecture arms the 

model to cope with regular and changing attack types while preserving high detection accuracy and reactivity in practical 

VANET situations. 

 

4. Experimental Setup 
In this section, we detail the environment, tools, dataset configurations, and evaluation metrics employed to assess the 

performance and robustness of the proposed GAN-augmented adversarial detection framework for vehicular ad hoc networks 

(VANETs). 

The performance of synthetic augmentation, adversarial robustness, and real-time deployability on computationally 

limited edge devices were studied. 

 

4.1. Dataset Configuration 

We used a modified version of the DSRC Vehicle Communication Dataset with simulated communication features in 

normal and jamming conditions. The dataset contains: Metrics related to a signal: RSSI, SNR, BER, PDR, Delay, Channel 

Load, Temporal indicators: Packet inter-arrival time, jitter, node speed, vehicle density. Trained on data until 2023-10. 

The dataset was split into the following: 60% for training (also including GAN-generated synthetic samples), 20% for 

validation (423,074 images paired with prefixes of a few images; clean only), and 20% for testing (clean, FGSM, and PGD 

distorted). 

Jamming Simulation and Generation: For adversarial training, approximately 5,000 synthetic jamming samples were 

generated using a conditional GAN (cGAN), conditioned on one of four types of existing jamming. These were merged with 

the original dataset to create the final training corpus. 

 

4.2. Implementation Tools and Software Stack 

In particular, the experimental framework is built on top of many popular AI and security libraries. Table 1 summarizes 

the primary software stack, which includes data processing tools, GAN training frameworks, adversarial testing toolkits, and 

classifier implementations. Experiments for both training at scale and deployment practicality were performed on two 

different machines: a high-performance GPU workstation and a low-cost edge device. 

 
Table 1.  

Implementation Tools and Software Stack. 

Component Technology Stack 

Data Processing Python 3.11, NumPy, Pandas 

GAN Implementation PyTorch 2.0 (Conditional GAN and WGAN-GP variants) 

Classifier Model TensorFlow 2.12 (CNN) and scikit-learn (Random Forest) 

Adversarial Attack Simulation CleverHans and Foolbox (FGSM, PGD generators) 

Visualization and Plotting Matplotlib, Seaborn 

Experiment Management Jupyter Notebook, Visual Studio Code 

 

4.3. Hardware Platform 

The (customized) hardware specifications of these systems are detailed in Table 2, to guarantee that the proposed model 

can work performantly within various computational environments. 

4.4. Evaluation Metrics 

The performance of the model was evaluated using: 
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Table 2. 

Hardware Platforms Used for Training and Deployment. 

System  Specifications 

High-End (Training) Workstation NVIDIA RTX 3080 GPU (10 GB VRAM), AMD Ryzen 9 

CPU, 32 GB RAM, Ubuntu 22.04 LTS 

Edge Device Test Deployment Raspberry Pi 4B, Quad-core ARM Cortex-A72 @ 1.5 GHz, 

4 GB RAM, Raspbian OS 

 

• Accuracy (%): Checks for the general accuracy of predictions by dividing the number of correctly classified samples 

by the total number of samples. It provides an overview of model performance on both clean and adversarial data. 

• F1-Score (%): The harmonic mean of precision and recall, which has a trade-off between false positives and false 

negatives. This is especially useful in datasets where classes are imbalanced and is important for evaluating how well 

the model detects jamming attacks without over-alerting, as depicted by other metrics. 

• False Positive Rate (FPR): The percentage of normal (benign) cases misclassified as jamming. In real VANET 

intelligent systems, a lower FPR is important to limit unnecessary countermeasure actions and false alarms. 

• False Negative Rate (FNR): It stands for the fraction of true jamming attacks that are not detected by the model. A 

high false negative rate (FNR) can be very harmful in terms of security, which is why this metric is important for 

assessing reliability in adversarial situations. 

• Adversarial Accuracy (%): Reflects the model’s robustness to adversarial perturbations in its samples; for instance, 

the samples perturbed by FGSM or PGD. It captures robustness, as in the real world. 

• Robustness Score (%): Measures how much more the accuracy drops on adversarial data compared to clean data. A 

higher numerical value denotes the model's capability to withstand performance degradation when exposed to an 

attack. 

• Inference Latency (ms): It computes the amount of time the model takes to process a single input instance. This 

measure is crucial for assessing whether real-time responses are possible, particularly on embedded or edge devices. 

• Model Size (MB): Indicates the final size of the trained model in megabytes. It may affect storage, load time, and 

deployability for memory-constrained hardware like OBUs or RSUs. 

 

5. Results and Discussion 
In this part, we provide results on the evaluation of our proposed GAN-based framework for online learning of jamming 

attack detection in VANETs. We report performance on clean and adversarial data, a discussion of drift recovery, and 

comparison against static ensemble models such as (e.g., El-Shafai et al. [21]) and non-adaptive online learners. Evaluation 

metrics include detection accuracy, F1 score, false positive rate, inference latency, and resource efficiency. 

 

 
Figure 4. 

Detection Performance Under Normal and Adversarial Conditions. 

 

5.1. Detection Performance Under Normal and Adversarial Conditions 

We showed that our adaptive model outperforms stationary as well as evolving models throughout the land. On test data 

untouched by attackers, it recorded a detection accuracy of 94.6% along with an F1 score of 93.4%. We trained on footage 

of the same configuration and, when assessed with adversarial attacks like FGSM and PGD, remained 87.1% accurate on 

average under attack, with the model performing over 10% higher than both our static ensemble and fixed-feature online 

baselines in some cases. This strong performance can be attributed to multiple factors, including the model’s ability to see 

GAN-generated synthetic attacks as well as its own adversarial training routines. 

While Figure 4 depicts the F1-score of the proposed model within both clean and adversarial settings, demonstrating its 

robustness against adversarial noise created through FGSM and PGD. This model is able to reach a high F1-score of 93.4% 
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on clean data, indicating strong baseline detection capabilities. Each adversarial perturbation leads to a monotonic drop to 

88.0% (under FGSM with ϵ = 0.01) and 86.2% (with ϵ = 0.03). 

Although accuracy drops to about 90% for both methods, the model preserves more than 80% accuracy under PGD, a 

much stronger iterative attack approach. At the peak of perturbation you tested (PGD, ϵ = 0.05), the F1-score is still at 80.1%, 

indicating that the system does not break down under extreme adversarial influence. The persistent strength of this is mainly 

due to: • We study the concept of adversarial training, which significantly improves a model by training on crafted attacks 

during learning. 

• GAN-based augmentation, which enriches the training set with synthetic jamming variants, 

 

 
Figure 5. 

Comparative Evaluation with El-Shafai, et al. [21]. 

 

• Finally, the hybrid CNN-RF architecture that reveals an enhanced generalization capability and smoothes the decision 

boundaries. 

Interestingly, the decline of F1-score is very low with an average of only 13.3% on a full list of adversarial configurations. 

This is an enormous improvement over baseline models from previous work, including El-Shafai et al. [21] which suffer 

significantly from performance degradation under drift or adversarial samples. 

In short, Figure 4 advocates the model’s sturdiness, flexible work process, and preparedness for the live on-road VANET 

settings, where different enemy arrhythmia from can happen and can also be damaging. 

 

5.2. Comparative Evaluation with El-Shafai et al. [21]. 

From Figure 5, adaptive model significantly outperforms static ensemble classifier introduced by El-Shafai et al. [21] 

considering four important performance phases: F1 score, post-drift accuracy, inference latency, and trash usage. 

These advancements are especially noticeable in the adaptation and real-time capabilities of the model. We obtain an F1-

score of 93.4%, which is 9.9% higher than El-Shafai et al. [21] at 85.0% in overall precision and recall in detection. The 

rationale behind this improvement is believed to be the use of adversarial training and feature diversity provided by the GAN-

generated samples that improve the decision boundaries of the model. 

El-Shafai et al. [21] the static ensemble demonstrates a notable performance drop to 76.4% upon concept drift in terms 

of post-drift accuracy, as the model cannot be updated in real-time [21]. Lastly, we can see that the proposed model recovered 

very quickly and achieved a post-drift accuracy of 92.3%, which demonstrates its capability in adaptive learning and concept 

drift resilience. 

From a deployment viewpoint, the recommended architecture is significantly more effective. We reduced the inference 

latency from 38.7 ms to 21.4 ms, representing an improvement of 44.7%. This reduction in latency is vital for real-time 

vehicular applications where decisions must be executed in a matter of milliseconds. The model also uses only 175 MB of 

memory, in contrast to the 248 MB used by the ensemble, yielding a 29.4% reduction in resource overhead and increased 

applicability in embedded platforms (RSUs and OBUs). 

Overall, the new model not only enhances detection precision and drift recovery but also offers a lean and top-speed 

answer designed for actual-world use in dynamic VANET settings, as affirmed by Figure [21]. These improvements directly 

overcome the limitations of the El-Shafai et al. [21] static ensemble, especially in dynamic threat landscapes. 

 

5.3. Computational Efficiency and Edge Suitability 

Apart from detection performance, something of extreme importance when deploying a VANET security solution is its 

effectiveness in terms of resource utilization, especially on resource-constrained edge devices such as On-Board Units 

(OBUs) and Roadside Units (RSUs). In this section, we analyze the proposed model in terms of its inference latency, model 

update time, and memory used, and compare it directly with the static ensemble method proposed by El-Shafai et al. [21]. 

• Inference Latency: The proposed model averaged 21.4 ms per instance for inference latency on a Raspberry Pi 4B 

(during streaming execution). The static ensemble described by El-Shafai et al. [21], due to overhead from ensemble 
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voting and CNN computation, exhibited a latency of 38.7 ms. This shows that the detection time has been reduced up 

to 44.7%, thus, the proposed approach is an ideal choice for ruling out VANET settings, which is expected to be 

detected within strict temporal limitations. 

• Model Update Time: The proposed system is capable of online learning, which makes it possible to update the model 

incrementally and efficiently by using lightweight classifiers like Hoeffding Trees. This led to an average model update 

time of 10.5 ms, which was much shorter than the static ensemble, which required 24.3 ms to retrain or refresh. A 

56.8% reduction in retraining downtime facilitates rapid adaptation to new traffic patterns and new jamming behaviors. 

• Memory Footprint: The memory usage of our proposed model during streaming execution was measured at 175 MB, 

while the El-Shafai et al. [21] model, at the cost of larger CNN-based ensemble components, needed 248 MB. The 

drop in memory consumption of 29.4% increases the model's usability on embedded edge devices with limited RAM 

and not cloud exploitation. 

• Edge Suitability: To evaluate cross-platform compatibility, the system was tested on a high-performance workstation 

and a Raspberry Pi 4 B. The results confirm that the model: Real-time constraints for decision-making in VANET are 

met (latency¡30 ms), can be deployed on low-power edge hardware, and then, no loss of detection accuracy while 

scaling. 

To sum up, the proposed framework is computationally efficient, low-latency, and lightweight, compared to static 

ensemble models without sacrificing performance. All these features tailor it to the real-world VANET infrastructure in which 

swift, context-aware, and localized threat detection is needed. 

 

5.4. Summary of Improvements 

The key improvements of the proposed model, in comparison to the static ensemble by El-Shafai et al. [21], are 

summarized in Table 3. In particular, the proposed approach improves performance by 9.9% in F1-score and increases post-

drift detection accuracy by 15.9%, demonstrating its efficacy in even dynamic and adversarial conditions of jamming. It also 

adds adaptive drift recovery, missing in El-Shafai et al. [21] architecture, stabilizing performance, at least, within 205 samples 

of drift onset. 

 
Table 3. 

Summary of Improvements Over El-Shafai et al. [21]. 

Metric El-Shafai et al. [21] Proposed Model Improvement 

F1-Score 85.0% 93.4% +9.9% 

Post-Drift Accuracy 76.4% 92.3% +15.9% 

Drift Recovery Time N/A 205 samples Adaptive 

Inference Latency 38.7 ms 21.4 ms –44.7% 

Update Time 24.3 ms 10.5 ms –56.8% 

Memory Usage 248 MB 175 MB –29.4% 

 

From the efficiency perspective, the proposed model saves 44.7% of the inference latency and 56.8% of the update time, 

which is important because the systems in VANET are real-time responsive. Moreover, its 29.4% smaller memory footprint 

makes it a better fit for edge deployment at low-resource vehicular nodes. The upgrades confirm the model’s potential for 

real-world threat protection. 

 

6. Conclusion and Future Work 
In this paper, we propose a novel dynamic mechanism for the detection of jamming attacks in vehicles under cloud-

based networks, which takes into account the limitations of prior static, offline-trained models. The proposed approach 

provides high detection accuracy and resilience to adversarial perturbations, as well as real-time applicability, integration of 

a Conditional GAN for realistic adversarial data generation, a hybrid CNN–Random Forest classifier for deep and 

interpretable decision-making, and an online learning pipeline with concept drift adaptation. It was extensively evaluated 

experimentally, yielding an F1-score of 93% and post-drift accuracy above 92%, and considerably reduced inference latency 

and memory consumption, suitable for edge deployment in resource-hungry vehicular environments. Better than the ensemble 

by El-Shafai et al. [21], the detailed methods demonstrated enhancement in adaptability, robustness, and computational 

efficiency of the proposed system. This work offers a scalable and resilient solution capable of guarding future VANET 

infrastructure against evolving jamming tactics (by allowing for continuous adaptation) and attenuating adversarial drift (by 

maintaining detection quality). 

Future work will expand the framework to accommodate multimodal attacks, such as jamming and spoofing cases. We 

also intend to investigate federated learning to enable distributed and privacy-preserving training of our models on vehicular 

nodes. Development will also focus on real-world deployment through the use of software-defined radios (SDRs) as well as 

integration with explainable AI (XAI) modules to improve transparency and trust in safety-critical decision-making. 
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