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Abstract

Phishing is still a prominent threat to cybersecurity and takes advantage of user trust by sending malicious emails to capture
credentials or install malware. Classical machine learning methods have not been able to keep pace with the changing
sophistication of phishing content. This work introduces a thorough assessment of two Transformer-based models—
ALBERT-base-v2 and TinyBERT—for phishing email classification. Utilizing a real-world dataset downloaded from
Kaggle, both models were fine-tuned and compared according to performance measures such as accuracy, precision, recall,
F1-score, and ROC-AUC. ALBERT achieved 97.54% in the test and a ROC-AUC of 0.997, whereas TinyBERT achieved
95.42% and a ROC-AUC of 0.992. The results from both models outperform some recent state-of-the-art approaches and
validate the practical applicability of lightweight Transformers for cybersecurity use cases. While ALBERT provides better
performance for cloud-based applications, TinyBERT provides significant computational efficiency that is suitable for real-
time and resource-limited deployments. Recommendations are made for improving adversarial robustness, interpretability,
and multilingual robustness. It is shown that Transformer models offer a robust, scalable platform for future phishing
detection systems.
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1. Introduction

Phishing by email remains one of the most prevalent and devastating forms of cybercrime today, exploiting human
vulnerabilities to steal sensitive information or install malware. In 2023 alone, over 36% of all data breaches globally
included phishing attacks, a testament to their growing sophistication and frequency [1]. This is because the advances in
phishing attack methods, with the aid of social engineering, spoofing, and wordplay tricks, have made the use of rule-based
and keyword-reliant detection systems ineffective in ensuring effective real-time detection [2].

In direct reaction to such limitations, the scientific community has turned increasingly towards transformer-based
models and deep learning models for phishing email classification. Transformers, particularly models like BERT [3]
ALBERT [4] and TinyBERT [5] have demonstrated immense capability in contextual semantic encoding in natural
language processing tasks like email classification and spam filtering. These models employ self-attention and pretraining
on massive corpora to enable fine-grained understanding of phishing activity even in the absence of surface cues.

ALBERT model, through its parameter sharing and factorized embedding parameterization, is extremely accurate and
lightweight computationally [4]. TinyBERT, on the other hand, is a BERT distilled model with a light footprint that is
appropriate for low-resource scenarios [5]. Despite these models having been deployed in past works within the framework
of general text classification, their comparative performance over phishing email datasets has not been extensively
explored.

This study validates the effectiveness of ALBERT and TinyBERT for phishing email classification using a real-world
labeled dataset. The preprocessed data was balanced to tackle the class imbalance issue through synthetic oversampling,
tokenized, and passed as input to each model to fine-tune. The accuracy, precision, recall, F1-score, and ROC-AUC were
used to validate the performance along with confusion matrices and loss curves according to the standardized deep learning
procedures in cybersecurity tasks [6]. Training was also made optimal through early stopping and learning rate scheduling
to prevent overfitting and promote generalization [7].

Using recent advances in transfer learning and model compression, the work sets a performance benchmark and offers
practical insight into real-world usability. The resulting framework has implications for scalable and effective phishing
detection in large-scale email security systems.

2. Literature Review
2.1. Phishing: A Persistent and Evolving Cybersecurity Threat

Phishing has been the most frequent form of social engineering attacks, wherein individuals and organizations have
been targeted to gather sensitive data, including credentials, fiscal information, and confidential reports. The attack channel
being email, owing to its frequency and ease with which it can be forged, presents the attacker with the opportunity to
impersonate a trusted source.

The COVID-19 pandemic also drove phishing attempts more, as cybercriminals exploited fear, health advisories, and
teleworking changes to develop context-aware phishing campaigns [8]. The campaigns also do not get detected by means
of common detection strategies by utilizing polymorphic content, sophisticated language manipulation, and domain
impersonation [2].

2.2. Traditional and Classical Approaches to Phishing Detection

Historical detection mechanisms relied largely on blacklisting, heuristic rules, and hand-tuned features such as
suspicious URLs, IP addresses, or metadata [9]. While useful for detecting known threats, such systems are not effective
against zero-day attacks and content-based deception. Machine learning (ML) introduced an adaptive framework using
algorithms like Naive Bayes, Support Vector Machines (SVM), Random Forests, and K-Nearest Neighbors (KNN) to
classify phishing emails based on extracted features [10, 11]. The above-mentioned methods were successful under
experimental scenarios but required significant feature engineering and failed to establish the contextual and semantic
nature of text data.

2.3. Deep Learning for Email-Based Threat Detection

Deep Learning’s (DL) success in NLP prompted its application for phishing detection. Early DL models, such as
CNNs, maintained syntactic structure in email text, while RNNs and LSTMs modeled word dependencies [12]. These
models outperformed conventional ML models but were slow to model long dependencies and bidirectional context—
essential for detecting fine-grained phishing signals.

Recent architectures such as Bidirectional LSTM and Hierarchical Attention Networks (HAN) are improving semantic
representation through attention mechanisms and hierarchical processing of email components [13, 14]. While their
sequential nature increases computational complexity and limits scalability in the case of large-scale deployment scenarios.

2.4. Transformers and the Rise of Pretrained Language Models
The introduction of the Transformer model [15] was a turning point in deep learning history. By modeling global
context through its self-attention component, transformers can represent sentence- and document-level semantics without
requiring sequential processing. This has paved the way for models like BERT, RoBERTa, XLNet, and DistilBERT,
pretraining on massive corpora and then fine-tuning on downstream tasks such as text classification and spam detection.
BERT [3] achieved state-of-the-art results on NLP tasks, including phishing email detection. Its size (110M parameters
for BERT-Base), however, made real-time operation particularly challenging on edge devices.
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2.5. Efficient Variants: ALBERT and TinyBERT

ALBERT [4] added parameter-sharing methods and factorized embeddings, drastically lowering memory usage while
at least matching or outperforming BERT. The parameter-scaled down architecture of ALBERT was specifically useful in
phishing detection, within computational limitations, consuming less time during training and inference in real-time at
email filtering systems with weaker infrastructure [4].

TinyBERT [5] employs knowledge distillation to compress BERT into a small and fast model with minimal accuracy
loss. It has been shown that TinyBERT can achieve over 96% of BERT's performance using just 15% of its parameters,
significantly reducing the inference time [16]. These qualities make it apt for client-side email security and loT-based
enterprise security systems.

Despite their promising performance, a comparison of TinyBERT and ALBERT on balanced real-world phishing
datasets is missing, which this study aims to address.

2.6. Challenges in Phishing Email Detection
2.6.1. Data Imbalance

Phishing detection dataset usually are subject to extreme class imbalance, with authentic emails outpacing phishing
instances by far. Skewed data distributions run the risk of causing bias in models to achieve accuracy on the majority
classes at the Phishing recall, which affects the Threats detection performance [17]. Techniques such as undersampling,
oversampling, and SMOTE (Synthetic Minority Over-sampling Technique) are widely applied but potentially introduce
noise or diminish variability [18].

2.6.2. Evasion Techniques

Modern phishing emails tend to evade the older keyword or pattern-based filters with obfuscation methods including
HTMLJ/CSS obfuscation, homoglyphs (e.g., "g00gle.com”), and context-aware text manipulation, and thus are more
difficult to stop using a general-purpose system [19]. It has become increasingly apparent that hybrid deep learning models
especially using a CNN with LSTM have been immensely successful in detecting deceptive tactics in phishing attacks due
to their ability to use both the spatial and sequential characteristics of URLs [20].

2.6.3. Interpretability

While they work efficiently, transformer-based models have the disadvantage of being black-box models. The inability
to give understandable reasons for prediction discourages their adoption in highly regulated sectors such as finance or
medicine [21]. Techniques such as attention visualization, SHAP values, or LIME are becoming increasingly popular for
interpreting model behaviour [22].

2.7. Gaps and Research Contributions

While there is extensive literature on phishing attack detection using conventional machine learning and deep models,
comparative evaluations of lightweight transformer models on balanced real-world phishing datasets are sparse.
Furthermore, it is necessary to explore the influence of optimization algorithms (e.g., early stopping and adaptive learning
rate schedules) on performance robustness across training iterations.

This research bridges these gaps by:

(i) Comparison of ALBERT and TinyBERT for phishing detection on a carefully selected, class-balanced email
dataset.

(ii) Adopting the same training protocols that include tokenization, early stopping, and custom learning rate schedulers.

(iii) Using holistic metrics such as ROC-AUC, F1 score, and plots of training and validation loss to offer diagnostic
feedback.

3. Materials and Methods
3.1. Dataset Acquisition and Preprocessing

The data used in this study was obtained from Kaggle and is referred to as "Phishing Email"
(https:/iwww.kaggle.com/datasets/mohammadaoalhija/phishingemail?resource=download&select=Phishing_Email.csv).
The data consists of a total of 18,650 email examples, with each having raw email text and a categorical label indicating
whether it is legitimate (safe, labeled as 0) or phishing (labeled as 1). To ensure data quality, all rows with missing values
were removed. Also, the data was shuffled randomly to eliminate any potential ordering bias that could affect model
performance.

The first analysis of the class split was a strong imbalance: approximately 39% of the emails (7,273 samples) had been
labeled as phishing and the other 61% (11,377 samples) had been labeled as safe. For such class imbalance, biased learning
will be introduced towards the majority class. For this reason, a downsampling scheme was employed on the legitimate
email class. Specifically, the safe email samples were selected randomly in fewer numbers to match the number of phishing
emails for class balance purposes.

The balanced dataset created has a total of 14,546 samples—7,273 phishing messages and 7,273 normal messages—
with an even 50/50 split between the two classes. Mathematically, this is represented as:

[Col=ICal= min(ICol.IC4l) = 7,273 (1)

Where:
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e  Coisthe majority class
e  C;isthe minority class

This balanced corpus serves as a robust foundation for training machine learning and deep learning models without the
risk of bias toward the majority class.

3.2. Train-Test Split
The balanced dataset was divided into test and training sets in a ratio of 80:20 using stratified sampling to preserve
class distribution between splits. Let the dataset be represented as D and the label as y € (0,1). The stratified split is
represented by Equation 2:
P(y = 1|Dtrain) =~ P(y = 1|Dtest) (2)

3.2. Tokenization
Two transformer models were utilized: ALBERT [4] and TinyBERT [5]. Model-specific tokenizers were applied to
tokenize the email text T into token sequences X€& Znxd, where n is the batch size and d is the maximum sequence length
as defined in Equation 3:
Tokenized output = Tokenizer(T;) =(Xi1, Xiz,...,Xid) 3)
Padding and truncation were utilized to guarantee consistent input lengths (d = 128) across the samples.

4. Model Architecture
Pretrained versions of the following were used:
(i) ALBERT-base-v2: A light and fast version of BERT with parameter sharing.
(if) TinyBERT: A compressed BERT distilled for efficiency.
Each model was fine-tuned with a final classification head outputting logits zeR?. The predicted class y is determined
as in Equation 4:

¥y =argmax z; 4
L
Frequency 2 2 2 2 2 2 2 1 1 14 1 1 1 1 1 1 1
' ; ; ; ; ; ; ; ' | ' | ' | | ' '
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Figure 1.

Phishing Keyword Frequency Heatmap.

Figure 1 presents the most common phishing-related words found within the dataset. Words such as "account”,
"verify", "click", and "login" are most likely to be found in phishing emails, indicating potential lexical cues that the

models learn to attend to when fine-tuning. This finding brings into context the importance of attention mechanisms in
ALBERT and TinyBERT.

4.1. Albert-Base-v2: Mathematical Representation
ALBERT (A Lite BERT) improves BERT by factorizing embeddings and sharing parameters across layers. Table 1
shows the architectural specifications of Albert:

Table 1.

Architecture Specifications.
Component Value
Hidden size H 768
Intermediate size | 3072
Number of layers L 12
Attention heads A 12
Vocabulary size V ~30,000
Sequence length S 512

4.1.1. Embedding Layer
Albert uses factorized embedding parameterization as seen in Equation 5:
E=Ew.En (5)
Ew € RY*E: Word embedding matrix
En €RE*M: Projection matrix
E: Embedding size (e.g., 128)
H: Hidden size (e.g., 768)
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4.1.2. Multi-head Self-Attention
Foreach headi € (1, ..., A):
QKT

Attention(Q,K,V) = softmax <E)V (6)
Where:

Q = Query matrix, K = Key matrix, while VV = Value Matrix

Q=XW K=XWK v=xw/

WiQ' VViK’ VI/L-VE]RH X dy

dk(dimension of key vectors) = H/A (for ALBERT-base-v2, dx = 64)

ALBERT Attention Heatmap (Last Layer Average)
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[SEP] -
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Figure 2.
ALBERT-base-v2 Attention Heatmap for a Phishing Email.

Figure 2 shows the average attention weights over tokens in a phishing email for the last layer. Darker colors are
associated with higher attention scores, which are useful for explaining which words (e.g., "suspended", "click", "verify")
the model is deeming suspicious.

4.1.3. Feed-Forward Network (FFN)
Shared across layers:
FFEN(X) = GELU(XW1+b1)W2+b, ©)
Where:
W, eRH* I,WQERI xH

4.1.4. Sentence Order Prediction (SOP)
Instead of using Next Sentence Prediction (NSP), ALBERT employs SOP. Let S; and S; be two segments from the
document. The loss function is binary cross-entropy, as described in Equation 8:
Lsor = —[ylog(p)+(1-y)log(1-p)] ®)
Where p is the probability of the correct sentence order.

4.2. TinyBERT: Mathematical Representation
TinyBERT is a distilled version of BERT, designed to retain high performance while being significantly smaller in size
through knowledge distillation. Let the student model be denoted by parameters s, and the teacher model by 6.

4.2.1. Knowledge Distillation Objective

The training objective is a weighted combination of soft target loss, intermediate loss, and attention loss, as seen in
Equations 9-12:
Soft target loss:

Lot = X1 1 KL(a(zO/0) || 0(2 /7)) 9)
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Where:
zl.(t), zl.(s): logits (Raw, unnormalized output scores from the teacher and student models before applying softmax)
from teacher and student.

e T:temperature parameter (A scalar used to soften or sharpen the probability distribution produced by softmax).

e  ¢: softmax function (A function that converts logits into probabilities by exponentiating and normalizing them).
Intermediate feature loss:
Linter = Zf=q Il i =1 113 (10)
Where hl(t), hl(s) are hidden states at layer [ for teacher and student.
Attention loss:

t
Lon = 7= 11 AP — A9 |12 (11)
Total loss:
LTinyBERT = aLsoft + .BLinter + yLattn (12)

Where a, B, y €R* are hyperparameters.

4.2.2. TinyBERT Architecture

TinyBERT uses fewer layers, smaller hidden size H’, and fewer attention heads h'. For example:
e Layers: 4vs. 12 in BERT-base
e Hidden size: 312 vs. 768
e Attention heads: 4 vs. 12

Each attention layer computes:

Head; = Attention(Q;, Ki, Vi),with Qi = XW,?, Ki= XW/, Vi= Xw} (13)
Then,
MultiHead(X) = Concat(heads,...,head,)W° (14)

TinyBERT Attention Heatmap (Last Layer Average)
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Figure 3.
TinyBERT Attention Heatmap for a Phishing Email.

Figure 3 shows the attention distribution of the final layer of TinyBERT. The model highlights phishing-specific terms
with lower computational cost, reinforcing its suitability for mobile or real-time scenarios.

4.2.3. Loss Function and Optimization
We used the Sparse Categorical Cross-Entropy (SCCE) loss for binary classification, which is defined as:
AN e’y
L(y,2) = —log (z}=0eif> (15)
Where 2, and Z; are the logits and y €(0,1) is the true label. The model is optimized using the Adam optimizer [23] with a
polynomial learning rate decay:

14
ne =no(1 - 1) (16)
Where n, =2x107°, T is total decay steps, and p = 1.0.
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4.2.4. Early Stopping and Regularization
Early stopping was implemented based on validation loss to prevent overfitting. If the validation loss did not improve
for 2 consecutive epochs, training was halted, and the best model weights were restored [24].

4.2.5. Evaluation Metrics
The models were evaluated using the following metrics as defined in equations 17-20:

TP+TN
Accuracy: Accuracy = —————
TP+TN+FP+FN
Where:

e TP is True Positive
e TNis True Negaive
e FPis False Positive
e  FNis False Negative
Precision: Precision =
TP
TP+FN (19)

F1 Score: F1 Score =2 x —— (20)
Precision + Recall

ROC-AUC: Measures the area under the ROC curve, which plots true positive rate (TPR) vs. false positive rate
(FPR).
Additionally, the training and validation loss curves were analyzed for overfitting and convergence behavior.

A7)

TP+FP (18)

Recall: Recall =

Precision x Recall

5. Results and Discussion
5.1. Model Performance Overview

Two BERT-based models, ALBERT-base-v2 and TinyBERT, were compared and fine-tuned for phishing email
classification. The results in Table 2 clearly indicate the superiority of both models over classification performance, with
ALBERT achieving marginally better scores for all evaluation metrics.

Table 2.

Summary of Final Model Performance on Test Set.
Metric ALBERT-base-v2 TinyBERT
Accuracy 97.54% 95.42%
Precision 97.58% 95.51%
Recall 97.54% 95.42%
F1-Score 97.54% 95.42%
ROC-AUC 0.9974 0.9920

The comparison between TinyBERT and ALBERT-base-v2 indicates the advantage of ALBERT in all critical
classification metrics. ALBERT-base-v2 posted an impressive 97.54% accuracy, considerably higher than TinyBERT at
95.42%. Precision and recall rates for ALBERT were similarly high, at 97.58% and 97.54%, respectively, demonstrating
the excellent capability of ALBERT to classify legitimate and phishing emails accurately with a negligible number of false
positives and negatives. TinyBERT, though less effective with accuracy of 95.51% and recall of 95.42%, also showed
competitive performance given its smaller model size.

F1-score also displayed matching trends, at 97.54% for ALBERT and 95.42% for TinyBERT, supporting ALBERT's
superior precision-recall trade-off. ROC-AUC values also validate these results. ALBERT recorded nearly perfect ROC-
AUC of 0.9974 while TinyBERT recorded a solid 0.9920. These results are particularly noteworthy against most current
phishing detection literature, in which baseline ROC-AUC scores for deep models range from 0.93 to 0.98 [25]. Both
models, especially ALBERT, thus demonstrate exemplary discriminatory power, well beyond state-of-the-art levels in this
area.

In general, ALBERT performed better than TinyBERT with greater accuracy, precision, recall, F1-score, and ROC-
AUC at all times. Although ALBERT is optimal when highest detection ability is required, TinyBERT is still very capable
and effective with much of the same classifying quality that can be used even in resource-constrained environments at
minimal expense.

5.2. Training Dynamics and Convergence
Training and validation loss curves of ALBERT and TinyBERT, as presented in Figure 4 reflect the distinct but
effective learning trajectory of the two models. ALBERT started off well with the training accuracy of 94.07% and the
validation accuracy of 97.09%. During training, its loss went down steadily from 0.1570 to 0.0224, reflecting firm and
effective convergence. By the final epoch, ALBERT's training accuracy was 98.97% and validation accuracy was 98.03%,
with its training and validation loss curves closely together in the process. The closeness shows minimal overfitting and
excellent generalization capacity.
Rather, TinyBERT started training with very poor initial training accuracy of around 82.92%, which is an indication
of the constraints of its lighter architecture. However, even though it increased over epochs considerably, it achieved a
maximum training accuracy of 96.28% along with a validation accuracy of 95.81%. Rather, its loss improved spectacularly
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from 0.4290 to 0.1084 in this regard. The loss curves plotted for TinyBERT reveal a consistent declining trend, with the
validation loss being very near to training loss, once again arguing against severe overfitting.

Overall, ALBERT and TinyBERT both experienced smooth, parallel decline in training as well as validation losses
with stable optimization. While ALBERT achieved better performance and convergence, TinyBERT also performed
competitively, and this can testify to its efficiency and resource-worthiness.

Training and Validation Loss for ALBERT and TinyBERT
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albert - Validation Loss
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Figure 4.
Training and Validation Loss Curve for ALBERT and TinyBERT.

5.3. Comparative Evaluation with Literature

The comparative performance analysis also highlights the strength of the models of this research—ALBERT-base-v2
and TinyBERT—in comparison to previous phishing detection research, as can be seen from Table 3. ALBERT-base-v2
achieved a very high accuracy of 97.54% and a record-high ROC-AUC of 0.9974 on a 14,625 balanced dataset of emails.
TinyBERT too was extremely robust, achieving an accuracy of 95.42% and a ROC-AUC of 0.9920, with its design being
done in a light-heavyweight manner optimized for performance.

Table 3.
Comparison with Existing Phishing Detection Models
Study Model(s) Used Dataset Size Accuracy ROC-AUC
This Study aca. : o
(ALBERT) ALBERT-base-v2 14,456 (balanced) emails 97.54% 0.9974
This Study . . . 0
(TinyBERT) TinyBERT (prajjwall) | 14,456 (balanced) emails 95.42% 0.9920
Lan, et al. [4] ALBERT GLUE Benchmark (11 89.4% 0.927
tasks)
Gupta, et al. [26] BERT and CNN Not specified 97.5% -
Jishnu and Arthi [27] BERT 200, 000 URLs 97.3% -
- CNN, LSTM, Hybrid | UCL phishing dataset, 98.9% (UCL), i
Ujah-Ogbuagu, etal. [20] | o\n/) s PhishTank 96.8% (PhishTank)
Uddin and Sarker [28] | DISUIBERT 5000 ~ real  phishing 94.7% 0.95
(Explainable) emails

Table 3 highlights a comparative analysis between this study's results and those from prominent existing phishing
detection models, focusing on key indicators such as dataset size, model type, accuracy, and ROC-AUC values. The
ALBERT-base-v2 model proposed in this study achieves a standout performance, registering 97.54% accuracy and a ROC-
AUC of 0.9974 on a balanced dataset of 14,456 emails. TinyBERT, a lighter and more computationally efficient
transformer, also performs strongly, attaining 95.42% accuracy and a ROC-AUC of 0.9920. These results demonstrate not
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only high accuracy but exceptional discriminative power, making both models well-suited for real-time phishing detection
tasks.

In comparison, Lan, et al. [4] utilized ALBERT across the broader GLUE benchmark, covering 11 NLP tasks. While
they achieved 89.4% accuracy and a ROC-AUC of 0.927, their model was evaluated on a generalized dataset rather than
phishing-specific data, which limits direct comparability. Nonetheless, their work underscored ALBERT’s efficiency and
parameter reduction, which aligns with the findings in this paper. Gupta, et al. [26] proposed a BERT-CNN hybrid model
for phishing detection in enterprise systems, reporting 97.5% accuracy. However, details such as dataset size and ROC-
AUC were not disclosed, making it difficult to fully assess the model's generalization and robustness.

Jishnu and Arthi [27] using a dataset of 200,000 URLs, implemented BERT and achieved 97.3% accuracy, but also did
not provide ROC-AUC values. The absence of this key metric in both studies hampers comparison in terms of detection
sensitivity and specificity. Ujah-Ogbuagu, et al. [20] employed CNN, LSTM, and a hybrid CNN-LSTM model on two
datasets—UCL and PhishTank. Their models reached 98.9% and 96.8% accuracy, respectively. Although these are
impressive results, the lack of reported ROC-AUC limits insight into their classification consistency, particularly on
imbalanced datasets.

Uddin and Sarker [28] adopted a transformer-based model with explainability (DistilBERT), achieving 94.7%
accuracy and a ROC-AUC of 0.95 on 5,000 phishing emails. While their use of explainable Al is commendable, their
results fall short of the ALBERT and TinyBERT models presented in this work.

5.4. Model Trade-offs and Real-world Applicability

For reproducibility purposes and to offer context to performance measurements, the following hardware configuration
was used in all of the experiments: NVIDIA Tesla T4 GPU with 8 vCPUs, 16 GB RAM, and approximately 8.1 TFLOPS,
on a Google Colab setup. ALBERT achieved better classification performance for phishing detection tasks but longer
training times of about 5 minutes per epoch on average. This characteristic enables ALBERT to be utilized more suitably in
server-side or batch-processing applications where inference speed is not a top priority. TinyBERT, meanwhile, while less
accurate, showed significantly sped-up training times—about 45 seconds for the first epoch, down to 11 seconds by the
fifth epoch. Its low-weight architecture and fast convergence enable it to be a top contender for real-time or mobile
deployment scenarios. It agrees with the results of Uddin and Sarker [28] who proved that lightweight transformer
models, such as DistilBERT, can be of equal performance to larger models, BERT - reporting the accuracy of 94.7% and an
F1-score of 0.95- and provide better performance in terms of efficiency to competitive models, which may be suitable in
resource-limited settings.

5.5. Limitations and Opportunities for Improvement

Even though the results are strong, the data were balanced with under sampling, which may not reflect real-world
distributions. Future work should explore techniques such as synthetic data augmentation or focal loss to maintain data
diversity when facing imbalance. Interpretability remains an open question. Techniques such as attention visualization,
SHAP, or LIME should be integrated for traceability of decisions—especially important in enterprise email systems.

6. Conclusions

This paper presents a comparative performance analysis of two Transformer-based models, ALBERT-base-v2 and
TinyBERT, suggested for phishing email classification. Based on an appropriately balanced, real-world dataset sourced
from Kaggle, the study follows an exhaustive approach comprising preprocessing, tokenization, model fine-tuning, and
performance evaluation using a benchmark selection of commonly used classification metrics. Empirical observations
demonstrate that both models achieve high predictive accuracy as well as generalizability. ALBERT-base-v2's test
accuracy is 97.54% and its ROC-AUC is 0.997, which reflects its capability to attain almost perfect classification.
TinyBERT, despite its compact size, also performs reasonably well, at 95.42% accuracy and a ROC-AUC of 0.992, but
with much lower training and inference computational requirements.

Compared with modern literature, the evaluated models performed better or were comparable to current-state methods,
a significant number of which had learned on smaller or imbalanced datasets. These results support the effectiveness of
both architectures for the phishing detection task and emphasize the practical relevance of model selection based on
deployment context—either accuracy-critical enterprise applications (optimizing for ALBERT) or low-latency real-time
applications (optimizing for TinyBERT). Although excellent general performance, there are several areas that are worth
investigating further. Future work can be supplemented by incorporating adversarial robustness techniques against evasion
attacks most commonly employed by phishing attacks. In addition, incorporating model interpretability systems such as
SHAP, LIME, or attention visualization would improve transparency and allow trust to be placed in automated filtering
systems for emails. Expanding the research to include multilingual phishing corpora will also improve its applicability
across linguistics and geography.

In conclusion, the proposed dual-model phishing detection system in this work presents a deployable, scalable, and
high-performance solution. The results demonstrate the ability of state-of-the-art Transformer models in security
applications and lay a good groundwork for future advancements in automated email threat detection.

7. Recommendations
Based on the methodology and findings of this study, several recommendations are presented to guide future research
in the development of phishing email detection systems based on Transformer models as well as the actual deployment of
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the same. First and foremost, it is strongly recommended that contemporary Transformer-based models such as ALBERT
and TinyBERT be included in the threat detection pipelines of cybersecurity systems. The performance exhibited by these
models in this study verifies their efficiency in identifying phishing content with low overfitting and high accuracy.
ALBERT is most appropriate for high-resource environments, such as cloud-based enterprise applications, whereas
TinyBERT offers a cost-effective alternative that is suitable for edge computing or mobile deployment, where
computational resources and latency are dominant considerations.

Besides, upcoming studies must employ large-scale, multilingual, and diverse datasets that more closely represent real-
world phishing attacks' variability and complexity to test models. Datasets need to include phishing emails from many
linguistic, geographic, and contextual sources to make them applicable globally and resistant to region-specific attack
methods. Besides, since phishing data sets in real-world settings are usually class-imbalanced, future releases need to have
adaptive solutions to deal with class imbalance. Techniques such as cost-sensitive learning, synthetic sample creation (e.g.,
SMOTE), and adaptive sampling schemes need to be employed to maintain detection accuracy at an optimum level in
production settings.

Another significant suggestion is the use of model interpretability tools. While Transformer models are highly precise,
their black-box nature poses challenges in real-world cyber defense contexts. Inclusion of explainable Al techniques such
as SHAP, LIME, or attention visualization would add transparency to model decisions and increase analyst confidence and
regulatory acceptability. It is also suggested that continual learning mechanisms be used to preserve model saliency over an
extended timeframe. Due to the dynamic and adversarial style of phishing attacks, models need to be updated intermittently
with novel and rising data. Active learning techniques may further optimize efficiency by allowing the model to ask for
labels on uncertain predictions, reducing the demand for time-consuming manual annotation.

Robustness to adversarial attacks remains a topical issue. The future work must test the performance of the models
against adversarially crafted phishing samples using techniques such as character obfuscation, semantic paraphrasing, and
HTML content embedding. Adversarial training would also strengthen models to better prepare them for deployment.
Lastly, to improve reproducibility, transparency, and collaboration, researchers are encouraged to open-source their
codebases, release standardized preprocessing pipelines, and utilize or contribute to publicly available benchmark datasets.
Doing so would allow for consistent study evaluation and propel advancements in the phishing detection space.

Abbreviations:
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute

DOAJ Directory of open access journals

TLA Three letter acronym

LD Linear dichroism
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