
380 

International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 380-393  

 

 

ISSN: 2617-6548 

 
 

URL: www.ijirss.com 

 
 

 

 

Neural network solutions for artificial intelligence based on the new MIU-Net model for 

segmentation of the lung images in the diagnosis and treatment of lung diseases 

 Gulnaz Nabiyeva1*,  Aliya Kalizhanova2,  Nurgul Abutalipova3,  Dina Koishiyeva4,  Sultan Akhmetov5 

 

1S. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan, and Heriot-Watt University, Edinburgh, UK. 
2Institute of Information and Computer Technologies CS MSHE RK, Almaty University of Energy and Communications named after 

G.Daukeev, Almaty, Kazakhstan. 
3Abai Kazakh National Pedagogical University, Almaty, Kazakhsta, and Heriot-Watt University, Edinburgh, UK. 

4Almaty University of Energy and Communications named after G.Daukeev, Almaty, Kazakhstan. 
5Al-Farabi Kazakh National University, Almaty, Kazakhstan. 

 

Corresponding author: Gulnaz Nabiyeva (Email: gulnaz_nc@mail.ru) 

 

  

Abstract 

The purpose of this research is to segment the chest on X-rays, a crucial step in medical image processing pivotal for 

diagnosing and treating lung diseases. By employing modifications to the U-Net model, this study endeavors to enhance 

chest segmentation on X-rays. The approach includes introducing alterations to the basic architecture of the U-Net model, 

integrating Inception blocks, and a using a squeeze-and-excitation mechanism to improve segmentation accuracy. The 

Shenzhen dataset, comprising chest radiographs, serves as the subject of investigation, highlighting the practical application 

of these modifications. The utilization of the MIU-Net model for automatic chest organ segmentation underscores its 

significance in the realm of lung disease diagnosis and treatment. Experimental methodologies encompass two types of 

data augmentation: Contrast Limited Adaptive Histogram Equalization (CLAHE) and the introduction of Gaussian noise, to 

test the model's robustness under various conditions. A comparative analysis is conducted against both the baseline U-Net 

and U-Net with Inception blocks. The results show that the improved U-Net model that includes Inception and Squeeze-

and-Excitation (SE) is a lot better than the original U-Net. Specifically, the Dice coefficient for the improved model stands 

at 0.9040 for the original data, 0.9306 with CLAHE application, and 0.9232 with Gaussian noise addition. These findings 

underscore the importance of the research, emphasizing the significance of improving the accuracy of chest segmentation 

on X-rays for early disease detection and treatment optimization, which are the practical implications of this study. The 

research’s implications extend beyond academic interest, offering potential enhancements in clinical practices for lung 

disease management. 
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1. Introduction 

Lung diseases, which include diseases such as lung cancer, tuberculosis, and pneumonia, represent a major global 

health challenge. These respiratory diseases are not only widespread, but they have a significant impact on people's well-

being and lives. Lung cancer stands as the foremost contributor to global cancer incidence and mortality, responsible for a 

staggering estimated 2 million diagnoses and 1.8 million deaths annually [1]. The intricate interplay of risk factors, 

spanning tobacco use, environmental exposures, and genetic predispositions, underscores the intricate nature of lung 

cancer. Chest radiography, due to its affordability, actively diagnoses lung diseases such as pneumonia, tuberculosis, 

cancer, and more. Manual analysis of images by expert radiologists can take more time, and artificial intelligence 

applications can help experts in diagnosis [2]. In addition, advances in imaging technologies and machine learning 

algorithms continue to change the landscape of respiratory health diagnostics, offering new opportunities for early detection 

and personalized treatment strategies [3]. Computer-aided diagnosis (CAD) systems based on convolutional neural 

networks can help in medical recognition tasks as well as in highlighting the region of interest in images [4].  These 

systems, effective in segmenting complex lung structures, utilize CNN architectures such as U-Net [5] due to their 

exceptional feature extraction capabilities. U-Net, known for its symmetric expanding and contracting contours, has 

become the standard in medical image segmentation [6]. Lung segmentation on X-ray images, is a challenging task, with 

difficulties caused by overlapping anatomical structures, variability in image quality depending on imaging conditions and 

patient, and the presence of noise and artefacts [7]. Researchers and the developers are actively working to improve 

segmentation algorithms due to the complexity and increasing volume of data [8]. Residual U-Net is a modification of the 

traditional U-Net architecture in which residual links or residual connections are integrated [9]. In Singadkar, et al. [10] a 

deeper model of this architecture was developed for lung segmentation. The Dense Inception U-Net model with 

convolutional layers, employs an additional Inception module and dense layers [11]. Also, given the limited amount of 

annotated data, it is necessary to use a variety of augmentation techniques to expand the dataset. In studies [12], various 

data augmentations have been applied, aiming not only to extend the datasets but also to bring the training samples closer 

to real clinical conditions [13]. In our study, augmentation techniques were applied to the X-ray images, such as CLAHE 

[14] for contrast enhancement and Gaussian blurring [15]. 

Our study proposes an improved version of the U-Net model, incorporating additional filters for deeper image 

processing. The integration of Inception blocks provides multi-scale analyses [16] while the addition of squeeze and 

excitation modules facilitates the extraction of key features [17]. 

 

2. Method and Materials 
The proposed MI-UNet model, Figure 3, based on the U-Net architecture, includes additional blocks for semantic 

segmentation. The encoder performs gradual image compression to extract key features, and the decoder reconstructs 

image dimensions for detailed segmentation. The inclusion of Inception blocks provides multi-level feature analysis, and 

SEblocks drill down into the features.  

 

2.1. U-Net Architecture 

The U-Net architecture is the basis for many state-of-the-art models in the task of biomedical image segmentation. It is 

based on convolutional layers. The MIU-Net model uses 3x3 convolutional blocks with kernels in the encoder, where the 

number of filters starts at 32 and doubles at each subsequent layer. The decoder uses 2 x 2 transposed convolutions [18] to 

increase the size of the feature maps, with the number of filters decreasing in reverse order. Moreover, the feature maps 

created by the transposed convolutional layers are high-resolution representations of the input data. This feature allows the 

network to make accurate localization and classification decisions, which are essential in biomedical image analysis.  

 

2.2. Squeeze Excite Block 

The squeeze-excite block Figure 1, function in the proposed model implements the squeeze-and-excite mechanism 

shown in Figure 1, which is a form of feature reconfiguration used to improve convolutional neural networks. This unit 

works by first applying global average integration to the input tensor, reducing each channel to a single scalar value. This 

https://creativecommons.org/licenses/by/4.0/
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compression operation captures the global spatial information of the input signal [19]. The SE block applies a series of 

convolutional filters to the input tensor, systematically recalibrating the feature maps. This adaptive recalibration ensures 

that the model pays more attention to the most informative features. This operation would be represented as Formula 1. 

1

'C
s s

c c c

s

u v X v x
=

= * = *å (1) 

Where * represents the convolution operation. We convolve each filter with the corresponding channel of the input 

tensor X, than aggregate the results to form the final output feature map. This technique is designed to enhance the neural 

network's sensitivity and its ability to discern pertinent patterns within the data, thereby bolstering the overall predictive 

performance of the model [20]. 

 

 
Figure 1.  

Squeeze excite block. 

 

The resulting vector then passes through two fully connected dense layers, the first of which uses the ReLU activation 

function for nonlinearity to reduce the channel sizes by a given ratio, and the second of which use a sigmoidal activation 

function to generate weighs on the channels to restores the sizes to the original number of channels [21]. 

 

2.3. Inception Block 

The inception block Figure 2, Function in the proposed model, builds a composite convolution block in the neural 

network by applying parallel 1x1, 3x3, and 5x5 convolution paths to the input tensor, each capturing features at different 

scales, and a maximal merge operation followed by 1x1 convolution to reduce dimensionality. 

 

 
Figure 2. 

Inception block. 
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These paths are then combined to merge their feature maps, and the merged output is fed into a squeeze-excite block 

that applies channel-by-channel feature recalibration to emphasize informative features and suppress less useful ones. We 

employ the maximum merge operation to integrate the distinct feature maps into a unified tensor, following the parallel 

processing paths. 

 

 
Figure 3. 

MIU-Net model architecture. 

 

The inclusion of 1x1 convolutions, in addition to their role in feature extraction, has implications for dimensionality 

reduction. They act as narrow layers that compress the feature space, thereby reducing the computational and parametric 

growth that would arise from directly merging multi-scale feature maps. Figure 3 represents the proposed architecture of 

MIU-Net with embedded SE and Inception blocks. 

 

2.4. Improving Generalization Ability 

Because the model architecture has a complex layer structure with additive blocks, the L2 regularizer [22], in 

convolutional layers, was additionally introduced to prevent overtraining. Without regularization, the model attempts to 

minimize the loss function without considering the complexity of the model, which can lead to high sensitivity to training 

data. The regularizer adds a loss function penalty proportional to the magnitude of the weights of these layers. The 

regularized loss function comprises the space between the forecasted and actual target labels and the L2 of the vector of 

weights according to Formula 2. 

( )
2 2

ý
2 2

L w y wl= - +                                 (2) 

The regularization factor is set at 0.0001, which is equal to 1e-4, this factor can be adjusted depending on the 

complexity of the problem and the size of the training dataset [23]. 

 

2.5. Comparison of MIU-Net with Experimental models 

To compare the proposed MIU-Net model, the algorithms of the basic U-Net model were used in the experiment, as 

well as the IU-Net model with the inclusion of an additional block.  The basic U-Net architecture uses dual convolutional 

layers with 128 and 256 filters in the encoder and 512 in the narrow layer, augmented with packet normalization layers to 

improve training stability. The model also incorporates max-pooling for dimensionality reduction and up-sampling to 

restore image dimensions in the decoder. In contrast, IU-Net extends the U-Net architecture by integrating Inception blocks 

into each encoder and decoder layer, which allows for deeper learning of images by utilizing parallel convolutional paths 

with different kernel sizes 1x1, 3x3, 5x5, and max-pooling. Table 1 shows the basic blocks and a description of the 

operation and parameters of the MIU-Net model filters. 

 
Table 1. 

Architecture of the MI-U-Net. 

Block Operation Layers parameters 

Encoder block 1 Inception block + SE block + Convolution + Activation 

+ BatchNormalization + Dropout + MaxPooling 

Inception: Filters: 32, SE: Compression 

ratio 8, dropout: 0.2, L2 regularization: 

1e-4 

Encoder block 2 Inception block + SE block + Convolution + Activation 

+ BatchNormalization + Dropout + MaxPooling 

Inception: Filters: 64, SE: Compression 

ratio 8, dropout: 0.2, L2 regularization: 

1e-4 

Encoder block 3 Inception block + SE block + Convolution + Activation 

+ BatchNormalization + Dropout + MaxPooling 

Inception: Filters: 128, SE: Compression 

ratio 8, dropout: 0.2, L2 regularization: 

1e-4 

Encoder block 4 Inception block + SE block + Convolution + Activation 

+ BatchNormalization + Dropout + MaxPooling 

Inception: Filters: 256, SE: Compression 

ratio 8, dropout: 0.2, L2 regularization: 

1e-4 
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Block Operation Layers parameters 

Bridge Convolution + Activation + BatchNormalization + 

Dropout 

Filters: 512, dropout: 0.2, L2 

regularization: 1e-4 

Decoder block 1 Transposed convolution + Concatenation + Inception 

block + SE block + Convolution + Activation + 

BatchNormalization + Dropout 

Transposed convolution: Filters: 256, 

Inception: Filters: 256, SE: Compression 

ratio 8, L2 regularization: 1e-4 

Decoder block 2 Transposed convolution + Concatenation + Inception 

Block + SE block + Convolution + Activation + 

BatchNormalization + Dropout 

Transposed convolution: Filters: 128, 

Inception: Filters: 128, SE: Compression 

ratio 8, L2 regularization: 1e-4 

Decoder block 3 Transposed convolution + Concatenation + Inception 

block + SE block + Convolution + Activation + 

BatchNormalization + Dropout 

Transposed convolution: Filters: 64, 

Inception: Filters: 64, SE: Compression 

ratio 8, L2 regularization: 1e-4 

Decoder block 4 Transposed convolution + Concatenation + Inception 

Block + SE block + Convolution + Activation + 

BatchNormalization + Dropout 

Transposed convolution: Filters: 32, 

Inception: Filters: 32, SE: Compression 

ratio 8, L2 regularization: 1e-4 

Output Convolution + Activation Filters: 1, Activation: Sigmoid 

 

Table 1 summarizes the architecture of the MIU-Net convolutional neural network, detailing the configuration of the 

encoder and decoder blocks, bridge, and output layer for image segmentation tasks. Each encoder block uses an initial 

block for multiscale feature extraction, a compression and excitation SEblock for adaptive feature recalibration, followed 

by convolution, activation, batch normalization, dropout for regularization, and maximum pooling for spatial 

dimensionality reduction, with filter sizes doubling from 32 to 256 throughout all four blocks. The bridge then processes 

the features using convolution and dropout.  

Decoder blocks repeat the structure of the encoder, but use transposed convolutions to upsample while maintaining the 

same filter sizes and SE compression ratios, and include concatenation steps to combine the features received from the 

encoder.  

Table 2 shows a comparison of the size and number of parameters for the U-Net, IU-Net, and MIU-Net models. 

 
Table 2. 

Model size and parameters. 

Model Size (MB) Parameters (M) 

U-Net 28.73 7,531,521 

IU-Net 9.91 2,598,209 

MIU-Net 167.64 43,945,921 

 

The model size, expressed in megabytes (MB), indicates the amount of memory occupied by each model, while the 

number of parameters, expressed in millions (M), reflects the depth of each network. In addition, the scalability of these 

models to different hardware platforms, from high-performance GPUs in research centers to more modest computing 

resources in clinical settings, is directly related to their size and complexity. According to Table 2, U-Net is the smallest 

and least complex model, while MIU-Net is significantly larger and contains more parameters, indicating its high 

complexity and advanced functionality. IU-Net occupies an intermediate position in terms of size and complexity. 

 

2.6. Shenzhen Dataset Description and Augmentation  

The study utilized a dataset [24] consisting of 566 x-ray images and 566 corresponding chest masks, each with a 

resolution of 512 x 512 pixels. The American national Library of Medicine and No. 3 Hospital in Shenzhen, China, 

collaborated to obtain these images.  

This dataset is distinctive in that it includes both healthy chest X-rays and images with evidence of tuberculosis. Figure 

4 shows an example of an image and mask from this dataset. 
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Figure 4. 

Some samples from the original dataset. 

 

2.6.1. Augmentation Methods 

In the experiment, two augmentation strategies were implemented, in which the number of images and masks was 

increased from 566 to 800. The first strategy involved a combination of transformations, including randomly varying 

brightness and contrast, applying CLAHE to improve contrast, random 90-degree rotation, combined shift, zoom, and 

rotation with constraints, and rotation within a specified range of angles. The second strategy involved the application of 

Gaussian blur to add artificial noise, imitation effects due to patient movement, or equipment deficiencies. The experiment 

uses these methods to not only make the model work better, but also to make sure that these improvements have real effects 

in clinical practice, especially when it comes to correctly separating lung x-rays in a variety of imaging situations. Figure 5 

shows some example data after augmentation with CLAHE, and Figure 6 shows sample images with Gaussian blurring. 

 

 
Figure 5. 

Several examples after augmentation with CLAHE. 
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Figure 6. 

Several examples after augmentation with Gaussian blurring. 

 

The use of CLAHE and Gaussian blur not only increases the variability of the dataset but also simulates real-world 

conditions that models may be faced with during processing. 

 

3. Implementation Detail 
The study was conducted in Google Colab environment [25] using Python programming language version 3.10.12 and 

the TensorFlow library version 2.15.0. A Tesla T4 GPU with driver version 535.104.05 and CUDA version 12.2 and 50.99 

GB of RAM was used for data processing. Adam, with a learning rate of 1e-4 and a patch size of 2 was used as an 

optimizer [26]. 

 

4. Evaluation Metrics 
The proposed MIU-Net model uses several key evaluation metrics to estimate and compare its performance with both 

the baseline, U-Net and the U-Net model for lung segment allocation. In this section, the key metrics are described and 

explained, including binary cross entropy loss (BCE loss),dice coefficient denoted as dice, and mean intersection over 

union, (Mean IOU). Below we present their equations and definitions [27, 28]. 

𝐵𝐶𝐸 𝑙𝑜𝑠𝑠(𝑥, 𝑦) = ∑ −(𝑦 ∗ 𝑙𝑜𝑔( 𝑦) + (1 − 𝑦) 𝑙𝑜𝑔( 1 − 𝑦))                                  (3) 

BCE loss is a key measure in medical image segmentation, quantifying the accuracy of pixel-level binary 

classifications. It penalizes the model for any deviation between the predicted probabilities and the actual binary labels in 

the images [25]. 

𝐷𝑖𝑐𝑒(𝐴, 𝐵) = 2
|𝐴|∩| 𝐵|

|𝐴|+|𝐵|
                                    (4) 

This metric defines the similarity between two sets, A and B, by measuring twice the intersection of the sets divided by 

the sum of their sizes [26]. 

𝑀𝑒𝑎𝑛 𝐼𝑜𝑈 =
|𝑚𝑎𝑠𝑘 ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 |

|𝑚𝑎𝑠𝑘 ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|
      (5) 

Mean IOU computes the overlap between the predicted segmentation and the real mask divided by their union, 

effectively measuring prediction accuracy in segmentation tasks [29]. 

 

5. Experiment and Results of Study 
This section presents the experimental results comparing the proposed MIU-Net model with the baseline U-Net and 

IU-Net to valid data from the original Shenzhen dataset. We extend the evaluation to the datasets using augmentation 

techniques, introducing CLAHE in the second subsection and Gaussian blurring in the third. 

 

5.1. Performance Evaluation on the Original Dataset 

The initial dataset consists of 566 image samples, each accompanied by its corresponding annotations. Before training, 

the images were resized from 512 to 256 pixels and then segmented into training, validation, and test sets containing 452, 

56, and annotated masks, respectively. This pre-processing was aimed at optimizing computational efficiency and ensuring 

a balanced distribution of data across subsets. The output values of the segmentation results of the underlying metrics are 

shown in Table 3. We have rounded the values to four decimal places.  
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Table 3. 

Segmentation results on the original dataset. 

Model  BCE loss Mean IOU Dice 

U-Net 0.6079 0.4493 0.6185 

IU-Net 0.0837 0.9035 0.9379 

MIU-Net 0.1003 0.9040 0.9495 

 

The results show that U-Net achieves moderate performance, with BCE loss at 0.6079, Mean IOU at 0.4493, and Dice 

at 0.6185. In contrast, IU-Net and MIU-Net show higher accuracy, with IU-Net showing BCE loss at 0.0837, Mean IOUat 

0.9035, and Dice at 0.9379, and MIU-Net showing BCE loss at 0.1003, Mean IOU at 0.9040, and Dice at 0.9495. These 

results indicate that IU-Net and MIU-Net outperform U-Net in terms of accuracy in identifying regions of interest on this 

particular dataset. The validation curves for the Dice and Loss metrics are shown in Figure 7 and Figure 8. 

 

 
Figure 7. 

Dynamics of dice coefficient on the original dataset. 

 

 
Figure 8. 

Dynamics of BCE loss on the original dataset. 

 

Figure 9 shows the segmentation results on the original dataset, where the differences in segmentation quality achieved 

by the different models can be clearly seen. 
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Figure 9. 

Segmentation results on the original dataset. 

 

5.2. Performance Evaluation after CLAHE Augmentation 

The use of CLAHE implied not only an improvement in the visual clarity of the images, but also a potential 

improvement in the accuracy of the trained models. Table 4 provides the results of the model's performance on the 

validation data. 

 
Table 4. 

Segmentation results with CLAHE augmentation. 

Model BCE loss Mean IOU Dice 

U-Net 0.1436 0.8847 0.9286 

IU-Net 0.1184 0.8888 0.9354 

MIU-Net 0.1880 0.8953 0.9449 

 

Applying the CLAHE method resulted in a significant improvement in the performance of all three models. The U-Net 

model showed improvement with BCE loss of 0.1436, Mean IOU of 0.8847 and Dice of 0.9286, indicating an improvement 

in overall segmentation accuracy. The IU-Net and MIU-Net models performed better, with IU-Net achieving a BCE loss of 

0.1184, Mean IOU of 0.8888 and Dice of 0.9354, and MIU-Net achieving a BCE loss of 0.1880, Mean IOU of 0.8953 and 

Dice of 0.9449. Below in Figure 10 and 11 is a diagram showing the comparative trend, and Figure 12 shows the lung 

segment predictions. 

 

 
Figure 10. 

Dynamics of Dice coefficient after CLAHE augmentation. 
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Figure 11. 

Dynamics of BCE loss after CLAHE augmentation. 

 

 
Figure 12. 

Segmentation results after augmentation with CLAHE. 

 

Figure 12 shows the forecasting models results’ and despite improved results on key indicators, there are still some 

errors in the output of segmentation forecasting. This highlights that even with improved accuracy of indicators such as 

BCE loss, Mean IOU, and Dice coefficient, models can still allow inaccuracies in identifying and selecting target segments. 

Various factors, such as limitation in the model architecture, data complexity, or flaws in the learning process, can cause 

such errors.   

 

5.3. Performance Evaluation After Gaussian Blurring 

The implementation of Gaussian blur as an augmentation method in our experiment was motivated by the need to train 

models for realistic imaging conditions typical of the medical field. Contrary to high-frequency noise, which can negatively 

affect image quality by masking important details, the low-frequency noise produced by Gaussian blur reproduces image 

blurring due to patient motion, equipment vibration, or other technical features. Further, Table 5 shows the numerical 

results of the learning outcomes. 
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Table 5. 

Segmentation results with Gaussian blurring augmentation. 

Model BCE loss Mean IOU Dice 

U-Net 0.1699 0.8945 0.8945 

IU-Net 0.1131 0.9131 0.9361 

MIU-Net 0.1470 0.8722 0.9131 

 

According to segmentation results after augmentation with Gaussian blur, there are differences in the performance of 

the U-Net, IU-Net and MIU-Net models. The U-Net model shows average performance with a BCE loss of 0.1699 and 

Mean IOU and Dice coefficient of 0.8945, indicating its moderate adaptation to the changes made. In contrast, the IU-Net 

and MIU-Net models perform significantly better: IU-Net with BCE loss 0.1131, Mean IOU 0.9131 and Dice 0.9361, and 

MIU-Net with BCE loss 0.1470, Mean IOU 0.8722 and Dice 0.9131. These findings indicate that both of these models are 

more effective for segmentation tasks in low-frequency noise environments. Following Figure 13, Figure 14, and Figure 15 

are plots and visual lung segment predictions illustrating the effect of Gaussian blurring on segmentation performance. 

 

 
Figure 13. 

Dynamics of dice coefficient after Gaussian blurring augmentation. 

 

 
Figure 14. 

Dynamics of BCE loss after Gaussian blurring augmentation. 
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Figure 15. 

Segmentation results after augmentation with Gaussian blurring. 

 

5.4. Comparison of Model Training Time Duration 

In addition to analyzing the segmentation performance, an important aspect is to evaluate the time required to train the 

models. Table 6 compares the training time of the UNet, Unet and MIU-Net models on the original dataset and after 

augmenting it with CLAHE and Gaussian blurring. 

 
Table 6. 

Training time comparison. 

Model Original CLAHE Gaussian blurring 

U-Net 3344.12 4997.96 4801.42 

IU-Net 841.44 2402.77 2376.05 

MIU-Net 5040.18 8401.02 8275.18 

 

Comparing the training times of the models after augmentation, it can be observed that IU-Net is the fastest model. 

Despite the increase in training time after augmentation, IU-Net is trained significantly faster compared to U-Net and MIU-

Net. For example, after augmentation with Gaussian blur, the training time of IU-Net is 2376.05 seconds, which is about 

39.6 minutes, while for U-Net and MIU-Net it is 4801.42 seconds, which is about 80 minutes, and 8275.18 seconds, which 

is about 137.9 minutes, respectively. 

 

6. Discussion  
This study proposes the MI-UNet model for the semantic segmentation of biomedical images, specifically focusing on 

x-ray lung segmentation, advancing the U-Net architecture by integrating Inception and SE blocks. Experiments conducted 

on the Shenzhen chest X-ray dataset demonstrate that MI-UNet surpasses the performance metrics of the base U-Net model 

and the modified IU-Net model in terms of Mean IOU, and Dice coefficient. Specifically, for x-ray lung segmentation, MI-

UNet achieves a BCE loss of 0.1003, Mean IOU of 0.9040, and Dice of 0.9495, significantly outperforming U-Net (Mean 

IOU of 0.4493, Dice of 0.6185) and IU-Net (Mean IOU of 0.9035, Dice of 0.9379). Furthermore, incorporating the 

Inception and Squeeze-Excite blocks into the MI-UNet model provides additional benefits. These blocks allow the model 

to capture more complex patterns and semantic information from input images, thereby enhancing its ability to accurately 

segment lung structures on X-rays. The Inception blocks provide multi-scale feature extraction, allowing the model to 

efficiently capture both local and global contextual information, and the SE blocks facilitate channel-by-channel feature 

recalibration, highlighting informative features and suppressing irrelevant ones. However, there are limitations to consider. 

First, the evaluation of MI-UNet effectiveness on a single dataset challenges the model’s generalizability. Further testing 

across a broader range of datasets, especially those including diverse lung diseases such as tuberculosis, pneumonia, and 

lung cancer, is necessary to confirm the model's versatility and reliability.A second limitation concerns the use of data 

augmentation methods, such as CLAHE and Gaussian blurring. While these techniques improve the visual quality of 

images for training, they may not accurately reflect real medical imaging conditions, potentially leading to artificially 

enhanced model performance without a corresponding improvement in diagnostic accuracy.Therefore, even though MI-

UNet showed promise in x-ray lung segmentation, more research is needed to see how well it works in a wider range of 

clinical situations and diseases. This will allow for a comprehensive evaluation of the model's potential in real-world 

applications and its ability to aid in the diagnosis and differentiation of lung diseases, contributing to advancements in 

medical diagnostics. Future research directions should address these challenges in order to bridge the gap between 

computational model development and clinical application, ultimately contributing to improved medical diagnosis and 

patient care. The utilization of advanced machine learning techniques, such as deep learning ensembles and transfer 
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learning, should also be emphasized. These approaches can potentially improve the reliability and accuracy of the MI-UNet 

model by utilizing different datasets and pre-trained models, thereby increasing its predictive performance and applicability 

for diagnosing a wider range of lung diseases in different populations and using imaging technologies. 

 

7. Conclusion  
In the Shenzhen dataset lung X-ray image segmentation study, the IU-Net model performed best with Mean IOU 

0.9131 and Dice 0.9361 after Gaussian Blur augmentation (Table 5), while MIU-Net dominated on the original data with 

Dice 0.9495 (Table 3). The application of CLAHE also improved the results of all models, especially MIU-Net with Dice 

0.9449 (Table 4). These results highlight the importance of choosing a magnification method to optimize the accuracy of 

the segmentation model when studying segmentation of lung X-ray images in the field of healthcare. 
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