
2067

International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 2067-2082

ISSN: 2617-6548

URL: www.ijirss.com

Examining the function of Merkle trees in enhancing security within big data technologies

Akku Kubigenova1, Almbubi Aktayeva2*, Altynbek Sharipbay3, Rozamgul Niyazova4, Aisha Sexenbayeva5

1Department of Information and Communication Technologies, Sh. Ualikhanov Kokshetau University, 020000, Kokshetau, Kazakhstan.
2Department of Information Systems and Informatics, Abay Myrzakhmetov Kokshetau University, 020000, Kokshetau, Kazakhstan.

3,4Research Institute of Artificial Intelligence, L.N. Gumilyov Eurasian National University, 010008, Astana, Kazakhstan.
5Department of Information Security, L.N. Gumilyov Eurasian National University, 010008, Astana, Kazakhstan.

 Corresponding author: Almbubi Aktayeva (Email: aakhtaewa@gmail.com)

Abstract

The main purpose of this article is to study the structural characteristics of the Big Data paradigm, which presents serious

data confidentiality, integrity, and security challenges. Big data technology and its associated services have become the

central topic of numerous scientific studies and popular applications due to the rapid progress in this field and the development

of data analysis solutions. Comprehensive solutions and innovative technologies are required to protect confidential

information. However, current evaluations of Merkle tree methods primarily focus on the metrics of traditional

cryptosystems. This article describes the Big Data Security ecosystem and emphasizes the importance of maintaining data

integrity and authenticity during exchanges in various fields. The authors propose that Merkle tree technology can effectively

solve these issues using a quantum cryptosystem algorithm, providing secure and efficient data exchange. In this work, we

conducted experimental research using Python and a quantum-computing library to obtain accurate test data. The scientific

novelty of the work is the development of a new method and technology for a modified Merkle signature scheme to select

the optimal computational efficiency and security. Finally, experimental studies have shown that researchers can use trusted

technologies to perform a complete probabilistic analysis of Merkle tree data, which allows for safe end-to-end Big Data

exchanges.

 Keywords: Big data analytics, Big data, Data management, Merkle trees, Quantum computing, Secure data processing.

DOI: 10.53894/ijirss.v8i1.4899

Funding: This study received no specific financial support.

History: Received: 16 January 2025/Revised: 11 February 2025/Accepted: 17 February 2025/Published: 24 February 2025

Copyright: © 2025 by the authors. This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Competing Interests: The authors declare that they have no competing interests.

Authors’ Contributions: All authors contributed equally to the conception and design of the study. All authors have read and agreed

to the published version of the manuscript.

Transparency: The authors confirm that the manuscript is an honest, accurate, and transparent account of the study; that no

vital features of the study have been omitted; and that any discrepancies from the study as planned have been explained. This study

followed all ethical practices during writing.

Publisher: Innovative Research Publishing

http://www.ijirss.com/
mailto:aakhtaewa@gmail.com
https://creativecommons.org/licenses/by/4.0/

 International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 2067-2082

2068

1. Introduction

The modern interconnected digital world has generated vast volumes of data. This is due to the advent of web

technologies, which have transformed user-generated content. The simplicity of content creation has led to a significant

increase in generated data. The recent boom in social media has further amplified real-time content generation, resulting in

the emergence of Big Data [1]. Today, more than a billion people use social media, quickly generating structured and

unstructured data volumes. The main challenge behind this colossal data lies in the analysis and processing of Big Data [2].

The emerging IoT sector is a primary source of Big Data, generating data from various sensors, including medical

devices, temperature sensors, and numerous additional software modules and digital devices. Big Data continues to challenge

the human capacity to process continuously generated and exponentially increasing data volumes, with significant sources

being modern digital technologies [3]. The primary sources of Big Data constantly generate a vast array of data (structured,

unstructured, and semi-structured) that exceeds the processing capabilities of modern database systems [4].

In addition to managing and analyzing Big Data, processing models will require optimization in the coming years

because the relevant data usually constitute a minimal volume of the overall data (low-density values) [5].

"Big Data" refers to the large volume, velocity, and variety of information resources that require economically efficient

and innovative data processing methods rather than traditional data processing methods to enhance understanding and

decision-making. Big Data is a branch of data science that explores various tools, approaches, and strategies for analyzing

extensive and complex datasets, deconstructing them, and systematically extracting insights and information. The main

differences between traditional and big data are the volume, variety, velocity, complexity, and potential value. Table 1

presents a comparative analysis of Classical and Big Data.

Table 1.
Comparative analysis of classical and big data.

Characteristics Classic database Big data

Volume of information From gigabyte to terabyte From petabyte to exabyte

Storage method Centralized Decentralized

Data structure Structured Semi-structured and unstructured

Data storage and

processing model
Vertical model Horizontal model

Data relationship Strong Weak

Processing methods

Traditional data analysis can be conducted using

primary statistical methods.

Advanced analytical methods, such as

machine learning and data mining, are

required for Big Data analysis.

Traditional data analysis methods are slow and

gradual.

Big data analysis methods are quick and

instantaneous.

Traditional data, for instance, comprises structured data that conventional methods can easily handle. By contrast, Big

Data encompasses many semi-structured, structured, and unstructured data that require specialized tools. At the same time,

Big Data provides valuable and profound information, which may be inconsistent or inaccurate.

Big Data is a comprehensive concept that requires a complete understanding from multiple participants, each with their

own architecture and technological preferences (see Figure 1) [6].

Figure 1.
Ontology of the big data concept.

 International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 2067-2082

2069

Big Data Processing Technologies are defined as software utilities primarily designed for analyzing, processing, and

extracting information from large datasets with highly complex structures that traditional data processing methods cannot

handle [7]. Researchers have investigated what needs to be known about Big Data, analytics, and cloud computing to set up

and process accurate data. They examined the coding languages needed to recognize the different types of Big Data storage

technologies and their importance, longevity, and accessibility [8].

Big Data expands the capabilities of classical statistical analytical approaches by incorporating modern methods that

leverage resources to run analytical algorithms. This transition is crucial as databases grow in size, variety, and complexity.

Big Data can be classified according to the key components based on the primary characteristics of the eight Vs: volume,

velocity, variety, veracity, value, validity, variability, and visualization. These refer to the vast amounts of data generated

from various sources (see Figure 2).

Figure 2.

Main characteristics of big data — 8V.

 These characteristics provide the foundation for understanding the challenges and opportunities presented by Big Data.

Studying these characteristics of Big Data is key to its proper utilization and fundamental to realizing its potential.

Additionally, the main factors are usually associated with further difficulties in storage, analysis, and application of

subsequent procedures or result extraction. Table 2 provides descriptions of the main characteristics of Big Data [9].

Table 2.

Description of the main characteristics of big data.

No
Big data

characteristics
Brief description

1. Volume

Volume refers to the amount of data measured in gigabytes, zettabytes (ZB), and yottabytes

(YB). According to industry trends, the volume of data is expected to rise substantially in the

coming years.

2. Velocity

Velocity refers to the speed of data processing.

High velocity is crucial for the performance of any Big Data process.

It consists of the rate of change, activity bursts, and the linking of incoming data sets.

3. Value

Value refers to the benefits that an organization derives from the data.

Does it match the organization's goals?

Does it help the organization improve itself?

It's among the most important core characteristics of big data.

4. Variety

Variety refers to the different types of Big Data.

It is one of the biggest issues the Big Data industry faces, as it affects performance.

It's vital to manage and organize a variety of data correctly.

 International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 2067-2082

2070

Variety refers to the various types of data gathered from multiple sources.

5. Veracity
Veracity refers to data accuracy. It is one of the most critical characteristics of Big Data, as low

veracity can significantly undermine the accuracy of results.

6. Validity How valid and relevant is the data for the intended purpose?

7. Volatility
Big data is constantly changing. Data gathered from a source a day ago might differ from today.

This is called data variability, and it affects data homogenization.

8. Visualization

Visualization refers to presenting significant data-generated insights through visual

representations such as charts and graphs.

It has become prevalent recently as Big Data professionals regularly share their insights with

nontechnical audiences.

Big Data analysis explores vast volumes of complex data to identify hidden patterns and correlations. This provides the

foundation for choosing the right technologies, implementing effective data management strategies, and obtaining meaningful

insights from the extensive and dynamic world of Big Data. Nevertheless, knowing the main features is not enough to

understand what Big Data is all about; one also needs to be able to use these features in complicated tasks with many variables

and fuzzy logic. However, this sharp increase in data consumption has led to numerous data security issues. There is an

apparent contradiction between the security and privacy of Big Data and their widespread use.

This article focuses on privacy and security issues in the realm of Big Data, distinguishes between privacy and security,

and discusses the privacy requirements in Big Data. The results provide practical and reliable mechanisms for information

security in complex and interconnected Big Data environments. This research contributes to the theoretical progress of threat

modeling and prediction and offers practical solutions for improving the cybersecurity status of interconnected Big Data.

2. Materials and Methods
2.1. Research on Big Data Security

Research and widespread applications in big data and related services have increased dramatically due to the rapid

development of data analytics technologies and solutions. However, there is an urgent need for a comprehensive system to

verify the integrity of big data.

New research [10] stresses the need for a strong system to check the integrity of large amounts of data, outlines a way

to do it, and emphasizes how important speed and accuracy are in the checking process. This approach aims to introduce a

model for the integrity of Big Data and consider the verification process. Ensuring the integrity of big data involves both

processing speed and the accuracy of the verification process. The authors of this study [10] use traditional data verification

methods, machine learning, and the Cerberus Framework to make their case for a strict testing methodology to ensure the

integrity of big data. They assert that this makes data more accurate and reliable in many situations. The research has utilized

the Python programming language with precise test data and incorporated the latest technologies and programming practices.

The authors of this paper [11] emphasize that ensuring data security is crucial as organizations collect and process vast

amounts of data; a lack of security can lead to significant financial losses and damage an organization's reputation.

Additionally, the study by Abdullah-Al-Musa, et al. [11] involves developing a comprehensive security model (BDS),

analyzing significant data challenges, integrating data analytics, identifying security needs, and providing actionable

recommendations to enhance considerable data security and integrity in organizational settings. The authors Abdullah-Al-

Musa, et al. [11] present a Big Data Security (BDS) model that aims to improve data security in organizations. The study

suggests that as data generation rises, the challenges related to significant data security will also increase, making the

implementation of the BDS model and other security measures vital for mitigating the risks associated with data breaches

and unauthorized access.

In this article, Jiana, et al. [12] present a technical framework for the life cycle and protection of personal information in

big data, summarize key technologies such as authorization, access control, security audits, traceability audits, and data

desensitization, and promote the implementation of a cyber power strategy.

In addition, in-depth research on these key technologies has been conducted to provide complete solutions for protecting

personal information in big data, cracking down on illegal user information trading activities, and creating a positive network

security environment.

The article by Vardanyan, et al. [13] argues that digital integrity, as a new basis for digital rights and a new form of the

limited idea of human dignity, could help protect people better in the digital world and fill in the gaps in protecting people's

digital rights. The paper [13] highlights that protecting personal data within big data frameworks is inadequate; it emphasizes

digital integrity as a foundation for enhancing data protection and individual rights.

This study by Yin [14] argues that data integrity is critical in big data environments to prevent corruption and loss,

provide reliable information for decision-making, and maintain trust in shared data across platforms. To ensure the security

and integrity of data, technology professionals need to establish a data authentication result detection algorithm that provides

reliability and usability of data by improving limited verification results. This paper by Yin [14] uses an algorithm to find

unreliable verification results and protect against forgery attacks. The results of the experiments show that the algorithm can

guarantee the accuracy of data verification.

This paper by Mehmood, et al. [15] aims to provide a comprehensive overview of privacy-preserving mechanisms in big

data and introduce the challenges for existing mechanisms. It illustrates the Big Data infrastructure and state-of-the-art

 International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 2067-2082

2071

privacy-preserving mechanisms at each stage of the Big Data life cycle. In addition, the paper discusses the challenges and

future research directions related to privacy preservation in big data.

The author of this paper [16] analyzes the technical challenges of implementing Big Data security and privacy protection

and discusses some key technologies and their latest developments. The analysis shows that Big Data effectively solves

information security problems while introducing security issues. It brings new opportunities for the development of

information security.

The study by Dongpo [17] analyzes the security problems of Big Data, proposes protection strategies for its security and

privacy, and studies the data collection and storage process. It argues that many professional privacy protection technologies

are needed to protect Big Data information and that users' privacy protection awareness must be improved to ensure privacy

information security.

Using reputation-based redundancy computation, this study by Gao, et al. [18] develops a way to protect the integrity of

big data processing in the cloud. It shows that the solution only adds a limited cost to achieving integrity protection and is

practical for real-world applications. The results of the implementation and experiment demonstrate that the solution only

adds a limited cost to achieving integrity protection and is practical for real-world applications.

This paper by Lebdaoui and Hajji [19] illuminates integrity issues in big data and introduces a new model for preserving

integrity in this context. The authors discuss some aspects of Big Data that affect data integrity and present a new model for

managing and protecting data integrity in the face of Big Data challenges.

2.2. Quantum-based Cryptography Technique

The article by Sookhak, et al. [20] discusses creating a universal architecture for replicated metadata services in

distributed file systems. The authors introduce a brand-new structure called RMS (Replicated Metadata Services) that

addresses the problems with current high-availability (HA) solutions and simplifies setup and testing. The paper provides

two examples of distributed file systems, PVFS and HDFS, to demonstrate the benefits of RMS. The study shows that the

HDFS RMS variant performs comparably to the original implementations.

This article by Aujla, et al. [21] proposes secure storage, verification, and auditing (SecSVA) of big data in the cloud

environment. The study shows that SecSVA can offer safe third-party auditing while maintaining data integrity across

multiple domains in a cloud setting. In this article, the authors propose a scheme, SecSVA, that enables secure storage,

verification, and auditing of big data in the cloud environment. They have developed an attribute-based encryption (ABE-

based) scheme to grant users access to the encrypted data in the cloud. The Merkle hash tree (MHT)-based algorithm protects

the integrity of the data, and the proposed scheme can handle different kinds of attacks on cloud-based data.

This study by Joseph, et al. [22] introduces a novel enhanced encryption technique with quantum-based neuro-

cryptography. The encryption uses logical shift and modulo operation-based transformation that eliminates data extrusion. In

quantum cryptography, the stream of photons generates a key, which neuro-cryptography then converts into the secret key.

Therefore, the researchers have developed a novel inherited process incorporating a cyclic crossover operation. Combining

ciphertext and key achieves one-point cyclic crossover and bit string mutation, thereby increasing confusion and eliminating

timing attacks. The proposed system increases throughput and reduces encryption and decryption time with high diffusion

and confusion properties.

This study by Shafia, et al. [23] proposes that cloud computing is an Internet-based technology that has emerged rapidly

in the last few years due to the widespread demand for services required by various institutions, organizations, and

individuals. The cloud server rapidly transfers structured, unstructured, and semi-structured data. The authors of this paper

provide an overview of the characteristics and state of security.

The authors of this study, Majdoubi, et al. [24], explore the landscape of quantum computing in the Big Data Era, drawing

parallels with classical methodologies. Their findings underscore the significance of quantum cryptographic methods, fueled

by further exploration and development in this dynamic and promising field that contributes to data security.

Most recent studies generally touch on the generic features of attribute-based encryption schemes, such as user

revocation, scalability, flexibility, data confidentiality, and scope in pairing-based attribute-based encryption schemes.

This research by Jemihin, et al. [25] states that attribute-based encryption (ABE) is commonly used to address the

problem of scalability in new public key infrastructure (PKI). The study also delves into recent challenges in attribute-based

encryption cryptography in the post-quantum era and highlights its differences from conventional pairing-based attribute-

based encryption schemes. The authors also suggest reviewing existing quantum-resistant attribute-based encryption schemes

based on their algorithm design, security, and functionalities.

Therefore, the use of various existing cryptography techniques has improved information security in big data. However,

the current methods lead to data extrusion due to shortened transformation and diffusion properties in the key generation and

encryption processes, resulting in data loss and leakage. This study builds on these findings and incorporates scenario-based

modeling to better manage threats and mitigate risks in increasingly complex and interconnected big data environments. By

summarizing the strengths and addressing the shortcomings of existing methodologies, this study contributes to the

development of interconnected big data cybersecurity frameworks.

3. Results
3.1 Merkle Tree Principle

Big data technology continues to evolve, and new security and privacy challenges arise with this development. Despite

its widespread use, current research lacks a complete understanding of the security aspects of Big Data. Applying quantum

 International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 2067-2082

2072

computing using Merkle trees to assess data quality is one possible direction that can help address security concerns and

increase confidence in big data technologies.

This study proposes a hybrid approach to secure data management. This approach enhances security and privacy in data

management and addresses the challenges of big data technologies. In this study, we propose using Merkle trees with quantum

and post-quantum computing, which can effectively check the integrity of data, provide security, and increase trust in big

data technologies:

1. A Merkle tree, also known as a hash tree, is a data structure that efficiently stores and verifies the integrity and content

of large amounts of data. It works by dividing a large amount of data into smaller blocks and generating a hash for each

block. The system then combines these hashes into larger ones, forming a root hash. This root hash is a complete summary

of all the underlying data, which makes data integrity checking very efficient.

2. A Merkle proof establishes the existence of a data item within a specific Merkle tree. With these features of the Merkle

tree, a Merkle proof can quickly verify the existence of a data element in the Merkle tree. This approach helps check the

integrity and content of large amounts of data.

3. Merkle Tree Principle:

A. Hash trees are primarily used to ensure the integrity of large data structures by verifying and validating the integrity

of their contents.

B. A hash tree is a generalized version of a hash list and chain, most of which are binary.

C. Using a branched Merkle tree, regardless of its branching, possesses all the characteristics of a tree structure.

D. The value of the end node is the hash of the data block, and the value of the non-leaf node is based on the values of

all child nodes or the values of the leaf nodes below it.

E. Hash trees are calculated according to the hash algorithm.

3.2. The Hash of the Parent Element = Hash (Hash of Child Element 1 + ... + Hash of Child Element N), Where + Denotes

String Union

Figure 3 shows the basic structure of the Merkle tree, demonstrating its hierarchical structure from the data blocks to the

Merkle root. The graph illustrates how to use cryptographic hashing to turn data blocks into final nodes. It then shows how

to build parent nodes in a loop, which ends with creating the Merkle root.

A hash is a function that converts arbitrary-length data into fixed-length data. The main difference between a hash tree

and a hash list is that a branch of a hash tree can be loaded in a single pass, and the integrity of each branch can be checked

immediately, even if the data of the whole tree is incomplete. When computing the hash of the final node, 0x00 is added to

the data, and 0x01 is added to the internal node's hash value; the tree's depth is limited to the depth of the subtree

corresponding to the node value.

Therefore, we only consider an extracted hash chain valid if the prefix decreases at each step and remains optimistic

when it reaches the final node. The hash tree uses hash operations such as SHA-224, SHA-256, SHA-512, etc. However, one

could use the checksum algorithm if the security requirements are not high, and it is necessary to ensure that the data is not

accidentally corrupted. To check the integrity of the data, the easiest way is to hash all the data to obtain a fixed-length hash

value and then publish it to the network so that when the user loads the data, it is hashed again. Specifically, we use a

combination of the RSA algorithm with 512-bit SHA encryption along with quantum and post-quantum cryptography to

ensure the data remains private and secure.

Figure 3.
Algorithm for calculating the Merkle tree hash.

 International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 2067-2082

2073

A unique feature of the Merkle tree is that the existence of any node or leaf can be cryptographically proven by computing

the root (See Table 3). The message signature is created using the private key from the selected key pair. Signature verification

involves computing the root based on the transmitted parameters and comparing it with a reusable public key. These

parameters are:

• Signature.

• Root.

• A one-time key, the private part of which is used to sign the message.

• Hashes from the tree lie on the path from the selected leaf to the root.

Table 3.
Advantages of Merkle trees in big data.

No Advantages Note

1

Efficient data

verification

processes

The Merkle tree provides an efficient means of verifying transactions without consuming much

computing power.

2
Less memory

footprint

Verifying transactions using the Merkle tree does not require loading all the data. Compared to

other data structures, it requires less space for computation.

3
Fast

transactions

Since transactions are paired together and a single hash is created, information transmission over

the network becomes faster.

This is one of the main reasons why cryptocurrency transfers are very fast.

4
Tamper

detection

The Merkle tree allows you to detect when a transaction has been tampered with. When a

transaction is hashed and stored, a change in the original information also causes a change in the

hash.

This can be determined by comparing the current hash with the hash stored in the block header.

This study aims to fill this gap by developing a theoretical framework for data security that considers different scenarios

based on Merkle path length and hash length. Empirical experiments validate the theoretical models by investigating

simulations with different hash lengths and Merkle path lengths. A Merkle tree with data blocks Y1, Y2, ..., Yn is given. This

study proposes a solution encompassing three primary experimental work functions.

3.2. Description of the Experimental Methodology

Tests are conducted to determine whether theoretical ideas about how different parameters, such as hash function length

and Merkle tree root path length, affect hybrid technologies that utilize quantum computing. Additionally, tests are performed

to assess how various parameters influence Big Data security.

This method of conducting experiments allows us to test our ideas about how likely the Merkle tree root hash function

will be computed in hybrid technologies that utilize quantum computing. It also enables us to assess the value and reliability

of these ideas in various situations. During the experimental phase of our study, we concentrated on the empirical validation

of three strategies:

• Developing a Merkle tree structure to organize the security of a privacy-appropriate chain of data blocks.

• Merkle trees are used in quantum cryptography as a data hashing function, and the SHA-512 algorithm (RSA 1024 or

RSA 2048) is utilized for data security.

The application of Merkle trees in post-quantum cryptography, utilizing a data hashing function with the KYBER

algorithm (simulation) for data security, is discussed.

3.3. Experimental Characteristics

In the experimental scheme, Merkle tree nodes are written as key-value pairs (merkle_key, merkle_value):

𝑁𝑗
𝑖 = 𝑚𝑒𝑟𝑘𝑙𝑒_𝑘𝑒𝑦, (1)

where:

• The top index, I, indicates the level at which the node is located in the Merkle tree.

• i = 0 indicates that the node is obtained by computing the hash of a blockchain transaction.

• i > 0 indicates that the node is obtained by combining its two child nodes.

• i = Root indicates that the node is the root node of the Merkle tree.

• A more significant value of "i" indicates that the node is closer to the root node of the Merkle tree.

• The lower index j indicates the serial number I of the node in the Merkle tree.

The lower index of each Merkle tree node increases from left to right. The merkle_value signifies the hash associated with

that Merkle tree node. Non-leaf nodes of the Merkle tree have both left and right child nodes. Suppose one could find a

Merkle tree node by locating its left and right child nodes if two Merkle-proof paths go through it to its left and right,

respectively. This node can be obtained directly without using any auxiliary information.

For this purpose, a Python program was developed to compare the experimental data results. The experimental design has

been carefully thought out to ensure that the experimental data models can be reliably validated.

 International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 2067-2082

2074

Example_1: The RSA 2048 quantum computing algorithm hash function is used to design and build a Merkle tree with

16 leaf nodes and five levels. This is done to ensure that Big Data is correct and authentic. Figure 4 shows the creation of a

Merkle tree model of 16 data blocks.

Figure 4.
Graph visualization of creating a Merkle tree model of 16 data blocks.

 Appendix 1 shows the pseudocode procedure used by the program to create a Merkle tree from 16 data blocks

implemented in Python. In addition, the program's pseudocode includes a modification to compute the root hash using

fractional distance scaling. The pseudocode and algorithm provide an overview of the functionality of the program, and key

concepts include:

• RSA key generation is used to create public and private keys.

• RSA digital signatures ensure message integrity and authenticity.

• Merkle tree construction for efficient hashing and integrity checking in big data.

• A graph visualization to show the structure of the Merkle tree.

Using Merkle trees, the program successfully combines cryptographic principles and techniques to protect the integrity

and authenticity of data. It also demonstrates how these structures work visually. This pseudocode will create a Merkle tree

using RSA quantum cryptography, derive the root hash and key pair, visualize the tree in classical form, and output it in a

readable format.

A path in a Merkle tree is a sequence of nodes and hashes required to verify the integrity of a particular block of data.

The characteristics of the hash function ensure a unique output value corresponding to any combination of two input data

sets. This function could serve as a tool to confirm the characteristics of the input parameters. Figure 5 displays the

experimental results.

Figure 5.
Graph visualization to show the structure of the Merkle tree.

 International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 2067-2082

2075

For example, as shown in the figure above, there are a total of 16 end nodes, and there can be a total of 16 hash operations.

𝐻1 = 𝐻(𝐻1, 𝑌1)

𝐻2 = 𝐻(𝐻1, 𝑌2)

 𝐻3 = 𝐻(𝐻2, 𝑌3) (2)

…

𝐻16 = 𝐻(𝐻15, 𝑌16)

Using the Merkle tree, we will need 32 hash operations, and by simplifying the validation dataset, we can save a

significant amount of memory space. Thus, we use this Merkle tree structure to organize the security of a privacy-appropriate

chain of data blocks.

 Example_2: The pseudocode algorithm describes the program's basic steps, which use SHA3-512 hashing and generate

public and private keys for post-quantum encryption. Figure 6 and Appendix 2 display the experimental results.

Figure 6.
Graph visualization to show the structure of the Merkle tree in Example 2.

Example_3: Simulation of KYBER post-quantum cryptography using the Merkle Trees hash function for 12 big data

technology data blocks. The Kyber algorithm employs quantum-resilient methods for key exchange and data encryption. It

is based on a lattice and provides security even against attacks by quantum computers. Figure 7 and Appendix 3 display the

experimental results.

The program demonstrates how to work with data hashing, construct and visualize Merkle trees, and other essential

aspects of big data technology and cryptography.

The key components of the program with data hashing are:

• Hashing: The hash_data() function applies SHA-512 to all data and intermediate levels of the tree.

• Merkle tree: At each level, hashing pairs of elements builds the tree from the leaves (data) to the root.

• Visualisation: NetworkX displays Merkle's tree as a directed graph, with nodes holding the hash values for each level.

• Post-quantum keys: Random hexadecimal strings simulate key generation for Kyber-type cryptography.

Figure 7.
Graph visualization to show the structure of the Merkle tree in Example 3.

 International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 2067-2082

2076

This program performs the following tasks:

• Key generation for post-quantum cryptography: The program generates random key pairs (public and private) to

simulate post-quantum encryption using the Kyber algorithm.

• Data hashing: The program uses the SHA-512 algorithm to compute the data hash.

• Merkle tree construction: The program constructs a Merkle tree from a list of hashed data. At each level, the data is

hashed until only one root hash remains.

• Merkle tree visualisation: The program uses the NetworkX library and Matplotlib to visualize the Merkle tree. It

displays the tree as a directed graph, with each node representing a hash of data and edges signifying the relationships

between its levels.

Post-quantum cryptography, such as the Kyber algorithm, and Merkle trees for hashing and retrieving information make

this algorithm secure and effective for big data technologies.

Despite their widespread use, current research lacks a complete understanding of the security aspects of Big Data. Our

research aims to fill this gap by developing a theoretical framework for data security that considers different scenarios based

on Merkle path length and hash length. Empirical experiments validate the theoretical models by investigating simulations

with different hash lengths and Merkle path lengths.

As part of the study's experimental phase, we conducted several experiments. The results show the importance of finding

the optimal hash length and Merkle path length to simultaneously make Big Data safe and efficient.

4. Discussion
This study is particularly pertinent as BIG DATA technologies expand, gathering and processing progressively intricate

data structures. First, this suggests that we must meticulously evaluate the depth of Merkle trees in BIG DATA technologies

to maintain an optimal level of security. Second, testing the theoretical model in the real world confirms the links between

hash length and Merkle path length in hybrid security technologies, such as quantum computing. It offers a pragmatic

instrument for assessing the security of Merkle tree implementations. The alignment of theoretical computations with

experimental evidence lends confidence to our conclusions. It provides a robust basis for future security assessments in Big

Data technologies to uphold an optimal security standard.

Prospective avenues for research. The intricate relationship between hash length and Merkle path length in hybrid

security systems, including quantum computing, presents avenues for additional research. Examining the ideal combinations

of these factors for various application scenarios might yield more precise recommendations for designing systems utilizing

big data and hybrid security methods.

5. Conclusions
This study not only identifies existing gaps in current research but also offers directions for future research. It emphasizes

the potential of combining big data with new technologies, such as quantum computing, which paves the way for new

developments and applications. In exploring these interdisciplinary connections, the authors highlight unexplored areas that

could lead to significant technological advances. This forward-looking approach ensures that the research remains relevant

and in line with rapid technological advances.

Finally, a thorough study that combines theoretical models with experimental checks not only provides a complete

picture of the connection between hash length and Merkle path length but also enables the verification of data integrity in

Merkle tree implementations in hybrid security technologies like quantum computing. The findings from this study play an

essential role in advancing Big Data security structures, making significant contributions to data integrity and privacy.

References
[1] A. Gandomi and M. Haider, "Beyond the hype: Big data concepts, methods, and analytics," International Journal of Information

Management, vol. 35, no. 2, pp. 137-144, 2015. https://doi.org/10.1016/j.ijinfomgt.2014.10.007

[2] M. Mahmoudian, S. M. Zanjani, H. Shahinzadeh, Y. Kabalci, E. Kabalci, and F. Ebrahimi, "An overview of big data concepts,

methods, and analytics: Challenges, issues, and opportunities," presented at the IEEE Xplore: 5th Global Power, Energy and

Communication Conference. https://doi.org/10.1109/GPECOM58364.2023.10175760, 2023.

[3] S. H. Islam, N. Mishra, S. Biswas, B. Keswani, and S. Zeadally, "An efficient and forward-secure lattice-based searchable

encryption scheme for the Big-data era," Computers & Electrical Engineering, vol. 96, p. 107533, 2021.

https://doi.org/10.1016/j.compeleceng.2021.107533

[4] U. Demirbaga, G. S. Aujla, A. Jindal, and O. Kalyon, Big data analytics,” In theory, techniques, platforms, and applications.

Cham, Switzerland: Springer, 2024.

[5] Z. Chenbin, L. Xu, and L. Jiguo, "Fuzzy identity-based dynamic auditing of big data on cloud storage," IEEE Access, vol. 7, pp.

160459-160471, 2019. https://doi.org/10.1109/ACCESS.2019.2950938

[6] A. A. Kharlamov and M. Pilgun, "Data analytics for predicting situational developments in smart cities: Assessing user

perceptions," Sensors, vol. 24, no. 15, p. 4810, 2024. https://doi.org/10.3390/s24154810

[7] N. Gavric, A. Shalaginov, A. Andrushevich, A. Rumsch, and A. Paice, "Enhancing security in international data spaces: A

STRIDE framework approach," Technologies, vol. 13, no. 1, p. 8, 2024. https://doi.org/10.3390/technologies13010008

[8] N. Stefanovic, M. Radenkovic, Z. Bogdanovic, J. Plasic, and A. Gaborovic, "Adaptive cloud-based big data analytics model for

sustainable supply chain management," Sustainability, vol. 17, no. 1, p. 354, 2025. https://doi.org/10.3390/su17010354

[9] S. Ren, P. S. Fong, and Y. Zhang, "Enriching value of big data cooperative assets from a time-horizon perspective,"

Sustainability, vol. 16, no. 24, p. 10961, 2024. https://doi.org/10.3390/su162410961

[10] F. Alyami and S. Almutairi, "Implementing integrity assurance system for big data," Wireless Personal Communications, vol.

122, no. 3, pp. 2585-2601, 2022. https://doi.org/10.1007/s11277-021-09013-x

https://doi.org/10.1016/j.ijinfomgt.2014.10.007
https://doi.org/10.1109/GPECOM58364.2023.10175760
https://doi.org/10.1016/j.compeleceng.2021.107533
https://doi.org/10.1109/ACCESS.2019.2950938
https://doi.org/10.3390/s24154810
https://doi.org/10.3390/technologies13010008
https://doi.org/10.3390/su17010354
https://doi.org/10.3390/su162410961
https://doi.org/10.1007/s11277-021-09013-x

 International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 2067-2082

2077

[11] A. S. Abdullah-Al-Musa, N. Z. Khidzir, and T. G. Tan, "Towards the big data and digital evidences integrity," Jurnal Intelek,

vol. 14, no. 1, pp. 1-8, 2019.

[12] B. Jiana, Y. Guo, N. He, and S. Wang, "Research on key technologies of personal information security protection in big data,"

Academic Journal of Engineering and Technology Science, vol. 6, no. 4, pp. 42-47, 2023.

https://doi.org/10.25236/AJETS.2023.060407

[13] L. Vardanyan, V. Stehlík, and H. Kocharyan, "Digital integrity: A foundation for digital rights and the new manifestation of

human dignity," TalTech Journal of European Studies, vol. 12, no. 1, pp. 159-185, 2022. https://doi.org/10.2478/bjes-2022-

0008

[14] S. Yin, "A study on data integrity verification result detection algorithm in big data warehouse," Journal of Physics: Conference

Series, vol. 1574, 2020. https://doi.org/10.1088/1742-6596/1574/1/012008

[15] A. Mehmood, I. Natgunanathan, Y. Xiang, G. Hua, and S. Guo, "Protection of big data privacy," IEEE Access, vol. 4, pp. 1821-

1834, 2016. https://doi.org/10.1109/ACCESS.2016.2558446

[16] Z. Wentao, "Big data security and privacy protection," in Proceedings of the 2nd International Conference on Computer Science

and Advanced Materials (CSAM 2019). https://doi.org/10.25236/csam.2019.012, 2019, pp. 52–55.

[17] Z. Dongpo, "Big data security and privacy protection," in Proceedings of the 8th International Conference on Control and

Information Science (ICMCS 2018). https://doi.org/10.2991/icmcs-18.2018.56, 2018, pp. 275–278.

[18] Z. Gao, N. Desalvo, and K. Pham, "Weidong integrity protection for big data processing with dynamic redundancy computation,"

Proceedings of the IEEE International Conference on Autonomic Computing. https://doi.org/10.1109/ICAC.2015.34, pp. 159 –

160, 2015.

[19] I. Lebdaoui and S. Hajji, "Orhanou Ghizlane Managing big data integrity," in Proceedings of the IEEE International Conference

on Engineering & MIS (ICEMIS). https://doi.org/10.1109/ICEMIS.2016.7745332, 2016, pp. 1–6.

[20] M. Sookhak, F. R. Yu, and A. Y. Zomaya, "Auditing big data storage in cloud computing using divide and conquer tables," IEEE

Transactions on Parallel and Distributed Systems, vol. 29, no. 5, pp. 999-1012, 2017.

https://doi.org/10.1109/TPDS.2017.2784423

[21] G. S. Aujla, R. Chaudhary, N. Kumar, A. K. Das, and J. J. Rodrigues, "SecSVA: Secure storage, verification, and auditing of big

data in the cloud environment," IEEE Communications Magazine, vol. 56, no. 1, pp. 78-85, 2018.

https://doi.org/10.1109/MCOM.2018.1700379

[22] A. Joseph, P. Mathew, and M. Cherian, "Enhanced cryptography techniques using inherited process with cyclic crossover

operation in big data," International Journal of Modeling, Simulation & Scientific Computing, vol. 15, no. 5, 2024.

https://doi.org/10.1142/S1793962324500375

[23] R. Shafia, A. H. Khan, and M. Haroon, "Big data security and privacy: Current challenges and future research perspective in

cloud environment," in Proceedings of the International Conference on Information Management and Technology (ICIMTech),

2020, pp. 977–982, doi: https://doi.org/10.1109/ICIMTech50083.2020.9211239

[24] C. Majdoubi, S. El Mendili, and G. Youssef, "Quantum cryptology in the big data security era," International Journal of

Advanced Computer Science and Applications (IJACSA), vol. 15, no. 7, pp. 1-10, 2024.

http://dx.doi.org/10.14569/IJACSA.2024.0150761

[25] Z. B. Jemihin, S. F. Tan, and G.-C. Chung, "Attribute-based encryption in securing big data from post-quantum perspective: A

survey," Cryptography, vol. 6, no. 3, p. 40, 2022. https://doi.org/10.3390/cryptography6030040

Appendix 1.

Pseudocode Example_1.

No Steps Activity Description of Key Functions

1.

Function

generate_rsa_keys

():

− Generate RSA key pair

(2048 bit).

− Return public and private

keys.

1. This function generates a pair of RSA keys (private and

public) with a key size of 2048 bits using the RSA class from the

Crypto.PublicKey library.

2. The public and private keys are exported and returned in

byte format.

2.

Function

sign_message

(private_key,

message):

− Calculate the message

hash using SHA-256.

− Sign the hash using the

RSA private key using the

PKCS1_v1_5 scheme.

− Return the signature.

1. The function calculates the message's hash using SHA-256

and signs the hash with the private RSA key using the

PKCS1_v1_5 signature scheme, a widely used signature scheme

in cryptography.

2. The function returns the generated signature.

3.

Function

verify_signature

(public_key,

message,

signature):

− Calculate the message

hash using SHA-256;

− Verify the signature using

the RSA public key and the

PKCS1_v1_5 scheme;

− If the signature is valid,

return True;

− - If not, return False.

1. The function checks whether the provided signature matches

the message using the public RSA key.

2. Verify the signature using the public RSA key and the

PKCS1_v1_5 scheme.

3. The function returns True if the signature is valid and False

if it is invalid.

4.
Function

hash_data(data):
− Apply SHA-256 to

compute the hash of the data.

This function calculates the SHA-256 hash of the input data and

returns the hash as a hexadecimal string.

https://doi.org/10.25236/AJETS.2023.060407
https://doi.org/10.2478/bjes-2022-0008
https://doi.org/10.2478/bjes-2022-0008
https://doi.org/10.1088/1742-6596/1574/1/012008
https://doi.org/10.1109/ACCESS.2016.2558446
https://doi.org/10.25236/csam.2019.012
https://doi.org/10.2991/icmcs-18.2018.56
https://doi.org/10.1109/ICAC.2015.34
https://doi.org/10.1109/ICEMIS.2016.7745332
https://doi.org/10.1109/TPDS.2017.2784423
https://doi.org/10.1109/MCOM.2018.1700379
https://doi.org/10.1142/S1793962324500375
https://doi.org/10.1109/ICIMTech50083.2020.9211239
http://dx.doi.org/10.14569/IJACSA.2024.0150761
https://doi.org/10.3390/cryptography6030040

 International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 2067-2082

2078

− - Return the SHA-256 hash

of the input data as a string.

5.

Function

build_merkle_tree

(leaves):

− Calculate the hash and

store each element in the

leaves (data) at level 0.

− If the number of elements

at a level is odd, duplicate the

last element.

− -While there is more than

one element at a level:

− -Hash each adjacent

element, creating a new level.

− -Return the root of the

Merkle tree and all hashes at

the levels.

1. The function builds a Merkle tree from the leaves (data),

repeatedly hashing pairs of nodes at each level to create a new

tree level.

2. The process continues until only one node remains (the root

of the Merkle tree).

3. The function also keeps track of the hashes at each tree

level.

4. If the number of elements at a level is odd, the last element

is duplicated to ensure parity.

5. Once the computation is complete, the root of the tree and

the hashes at each level are returned.

6.

Function

visualize_merkle_

tree (levels):

− Create a directed graph

using NetworkX.

− Add nodes and edges to

represent the Merkle tree

structure.

− Assign positions to nodes

for visualization (leaves at

level 0).

− Link nodes to parents and

neighbors.

− Plot the tree using

matplotlib.

− Label nodes with hashes

and plot the graph.

− Plot the graph using

matplotlib.

1. The function visualizes the Merkle tree using the NetworkX

library to create the graph and matplotlib to display it.

2. Create a directed graph using the NetworkX library to

visualize the Merkle tree.

3. Nodes are added to the graph for each level of the Merkle

tree.

4. The positions of the nodes are calculated based on the tree

level to visualize the hierarchical structure.

5. The relationships between parent and child nodes are

displayed.

6. The graph is output with signed hashes on the nodes.

7. Main Function:

1. Create a list of data (e.g., 16 elements).

2. Generate a pair of RSA keys.

3. Output public and private keys.

4. Sign the message and verify the signature.

5. Build a Merkle tree and output the root of the tree.

6. Visualize the Merkle tree.

7. Verify and output a valid RSA signature.

8. Result

RSA Public Key:

-----BEGIN PUBLIC KEY-----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA+JoEsfpFiAEXDrHbBcFQ

dcHMSbxe8ooeWyfYjF3p0AfX6h8gPL51FcFk9WU8wze2eTx72il7+25iHt4cRIbr

BjnVB7+XPmlPa89SfSzoT2hFWp6tc5YuPHxfW+NV2JoDbUmqrxZSXwBqm3fHDMJM

IUGj0vn0IZCNBNGoPrLuj7NHAVEnTLKqD8HbctBh2n1S+H0Vl1F9wt/dysS7UzWW

4GLw3JBJG+v/1dxhxkgd+CeVGq6u73htvheY6Pi2vg9KzAVvsKNkhWm39DNvxLvB

Mm+qieZDN4A4VijPj4uqbkHOS1Nogm5UuPpWQyPrxh5V14t6HWzJx4fEkCJizBIN9wIDAQ

AB

-----END PUBLIC KEY-----

RSA Private Key:

-----BEGIN RSA PRIVATE KEY-----

MIIEogIBAAKCAQEA+JoEsfpiAEXDrHbBcFQdcHMSbxe8ooeWyfYjF3p0AfX6h8gPL51Fc

Fk9WU8wze2eTx72il7+25iHt4cRIbrBjnVB7+XPmlPa89SfSzoT2hFWp6tc5YuPHxfW+NV2Jo

DbUmqrxZSXwBqm3fHDMJMIUGj0vn0IZCNBNGoPrLuj7NHAVEnTLKqD8HbctBh2n1S+H

0Vl1F9wt/dysS7UzWW4GLw3JBJG+v/1dxhxkgd+CeVGq6u73htvheY6Pi2vg9KzAVvsKNkh

Wm39DNvxLvBMm+qieZDN4A4VijPj4uqbkHOS1Nogm5UuPpWQyPrxh5V14t6HWzJx4fEk

CJizBIN9wIDAQABAoIBAHmz0NOebXao7fRELrCRFEYpw0xfuu2qnzTJ+3GwMhwlEtcrOLl

0Fda6MCYQUyBQwHR2nz1MrMUIo2FwI8+KazlHi5o4+Z5UqMxjGQNtvibNqZI09z4MSgNT

cc2GrAqXT1ErzLLdTyLyDb6h

cyE0Z1eqjjxlIFZkMR0oVGCpcS+IQhYZY4MJ/H01f8IOfxh/j88CBVUndloGcKy7PiuSNgE8Ic

G66FuEXXFsMj5tMJfgnfyRHKGYMCmqg2M0KYoy7nPYe/7TweM/OWhuMIWF29j+1Bf/F

YtPJkXxBLKdpsXEWr0q2a72AFar8uWkxNuw+m+F4PkHdxmoQvqW0PHXAtUCgYEA+NY

 International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 2067-2082

2079

 Appendix 2.

Pseudocode for Example_2

No Steps Explanation of Pseudocode

1.
Function to hash data using the

SHA3-512 algorithm

− Function hash_data(data):

− Convert the string 'data' to bytes using UTF-8 encoding.

− Apply the SHA3-512 hash function to these bytes.

− Return the hash as a hexadecimal string.

2.
Function to generate keys for

post-quantum cryptography

− Function generate_post_quantum_keys():

− Public_key = Generate a string of 128 random characters from

"0123456789abcdef".

− Private_key = Generate a string of 128 random characters from

"0123456789abcdef".

− Return public_key and private_key.

Bx2qEK8l4Yoi5Z6/yjiiAIqr/Ef5r1Gr90i5ciBUftlPdEeLUfKVie27rb4dv7E5nodCHbhlEjtlG0Jka

qzAzHyW8ajH/K2SJmliHXYStsHgnxfpRxBaDlVaJ3BSVmdWsfjeeVFdLihKaehDrXWcDhloX

SP2QixK5QCBy6nMCgYEA/8JIyGlOFzCitjO5PJGm2Vy9/pVTnB0EDiLmh2ymRAYGMSXH

5qpzRPQVqwDL5ByZZ0V/F2iK9G8rxHD07BLxWtNw38hGrat6PzKkMFTuKmfFW/quz09H2

uuDvd/D31/gHxRF/UOlTnblq318nRdGyCEvABZs+QnFt3djVpoFGW0CgYBHKjVSCeWI/FK

go4ea3tgYzf5va8YNKF1AX+T9kmLGTHxIUc28ysmIaGg08vEEcZCR3Y6H2bKRy0ovLHazO

8ZDxUIpm0o6eNgIWfV8nesA1OwztvlxBnkSAnpZYGmG9qAeYdy2MEPozRp+f3mMhYA6sz

Zv2x4jstj+3Tj73QvgfwKBgHLv0N2f1WQ+iyDupbQ+kIjmUMv0N5rUv1nK/WamwSGYw3eaz

vcuapb2SjaLKRXedGIgrTjL1oZ632RsjuT4rlZu5y7qRjkN8uYrz/WYdV/BOsRXJ/AqZNRROuc

9hD0CTSoqZjmnCMb2T8h9oF7IcxrFLuYPLfHNHnmQwafNl7URAoGAbKNRwEt4nUzjzUZ

3i01A607HfXdQpIcAix5gQO1qPHJoXJfWV8a9jclbEGPkQsPqqfP0JXmakKJv53B+igz+Nbxn

S88TNdUpGAyBgFWc2tKTvAR7IlACC5R+kqU+ZY1Gim4hvPN4mwb34hggtDFarEZiNoTlos

PcXTHKFgVhTuM=

-----END RSA PRIVATE KEY-----

Building Merkle Tree...

Level 0 (leaves): ['5b41362bc82b7f3d56edc5a306db22105707d01ff4819e26faef9724a2d406c9',

'd98cf53e0c8b77c14a96358d5b69584225b4bb9026423cbc2f7b0161894c402c',

'f60f2d65da046fcaaf8a10bd96b5630104b629e111aff46ce89792e1caa11b18',

'02c6edc2ad3e1f2f9a9c8fea18c0702c4d2d753440315037bc7f84ea4bba2542',

'e195da4c40f26b85eb2b622e1c0d1ce73d4d8bf4183cd808d39a57e855093446',

'9c67b4b76a18503009f542ef7c93dc7ac94aebbc6141515bea4e63e3068373a6',

'28b815d8952fd6517f2584a3f5f300a9b1289faeadfac4fc6d6bd5a781e75df5',

'b5cc74ab5bb5a5f1acc7407be3e4cbce8611c5ed07354ab9e510b74ee0b273cb',

'bbe0aa41024faeac81813a0194a95637d54cc65c025e0efd857ce0afcd51573f',

'1d7cf04971d73d83d66e430a406a1fc0c9cce8d90cb108c7c9d253e96b94cb85',

'29e8c5e2631fcef93a0912f6a6526b77e499eacf80cf4150a858ae2e8cd1e5b5',

'f4c7ef276b49b82aabf55d2ca438be349d1e5ee16544f426467fa05aefa132e2',

'0e69703c8a1492efdf1fe666a3b4b0ad2133a4aca7bb4789eb4c8d54844c0f04',

'15033b3da8a3f4ee46a9fea3eb5b2341c08df8981c2b616ce0b4925cae6981e6',

'87fef323635f22fc88999957a585c3cf3f8383029c8501e52928a14028c0af2c',

'86f4eb3ab6578e5d16e3ed2e04457c7cea474c8af2471b4a7274fcf9a1a2b2e1']

Level 1: ['7a598b35dcbb2b6c7b45ffc1e4152a1f822ef41f68fff3a1b457d057629d89ec',

'23431736aac0ab2cab427b40cae8253bf66e3fb5721f34696cf54730aefce451',

'ceab270c71ef4a4731e2bbedec99789e945b15864b99c5dcb64087bfa6b38cbf',

'ebd4aa436e4db1a4c6f0d78c98cef9c465b74ff728804712aee78716bbbdf77a',

'995613b3d53d6db250f42b9b205daca9e532a3ff9fe153eabe2650a112c658c5',

'de7d7c850737d01b8afa3ec99489791dab30afcb96432c29c2cedeaa303f4a9e',

'54e9529bc1feb07037acd631a823a88d47901d3768fda1d1cb33efbc49c1b380',

'e1ac858e56762e68d8a92efa4f0c3e2f737bb6a6ef5814d3d147b9dd1915e5b3']

 Level 2: ['51a0d54f81dcc317ea21d2125c65d796eac64e7c52b886d40388cf1f1abf93eb',

'4bceb66a020ea472c1d904bc8a5082e8d5c972dc9a24561ea44e8a63808f3db9',

'cb658ad910083d3a35d2ac2b110345ef0a3c52fbb9531a9e40712b5f40453874',

'0c4761b88caa5ca11cbbd21d5af9e0bcf8b4e9f861eda428404b42334cb4b782']

Level 3: ['a977d1fd7936b28b9520d3266b2ebc9f68b0f66b676621f9a688c9666c0ef496',

'52aa51303b88d6ad4f98ed59b37732f2b0c7b448cc6a21d02601bd848e15f8de']

Level 4: ['841147261d70ce4017be0035772905d227976487277f1c74c4fb6e91ed0b434e']

 Merkle tree root: 841147261d70ce4017be0035772905d227976487277f1c74c4fb6e91ed0b434e

 International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 2067-2082

2080

3. Function to build a Merkle tree.
− Function build_merkle_tree(leaves): Tree = Empty list.

− For each leaf in 'leaves': Add the hash of 'leaf' to 'tree'

4.

Build the tree: hash pairs of

elements at each level.

−

−

−

Return to the root of the tree.

− While the length of the 'tree' is greater than 1:

− If the length of the 'tree' is odd:

− Add the last element to 'tree' (duplicate it)

− New_tree = Empty list

− For each i from 0 to len(tree)-1 with a step of 2: Parent_hash =

hash_data(tree[i] + tree[i+1]).

− Add the 'parent_hash' to 'new_tree'.

− Update 'tree' with the new hashes from 'new_tree'

− Return tree [0].

5.
Function to visualize the Merkle

tree.

− Function visualize_merkle_tree(leaves):

− G = New directed graph (DiGraph)

6.
Hash all leaves and add them to the

graph

− Tree = Empty list.

− For each leaf in 'leaves':

− Leaf_hash = hash_data(leaf)

− Add 'leaf_hash' to 'tree.'

− Add a node to the graph with the label 'leaf_hash.'

7. Build the tree

− level = 0

− While the length of the 'tree' is greater than 1: Parent_level_nodes =

Empty list

− For each i from 0 to len(tree)-1 with a step of 2:

− If i+1 == len(tree): Parent_hash = hash_data(tree[i])

− Else:

− Parent_hash = hash_data(tree[i] + tree[i+1])

− Add the parent node with the label 'parent_hash' to the graph

− Add edges between the nodes and the parent node

− Add the parent node to 'parent_level_nodes'

− Update 'tree' with the new hashes from 'parent_level_nodes.'

8.
Set up the positions for

visualization.

− Pos = Empty dictionary.

− For each node in the graph:

− Extract the level and index from the node's identifier

− Set the position of the node on the X-axis (index) and Y-axis (level)

9.
Visualize the graph.

−

− Set visualisation parameters: node size, edge colour, labels, etc.

− Display the graph with edges and labels.
MAIN PROGRAM:

10.
− Main ():

− Data for the Merkle tree.

1. data = ["data1", "data2", "data3", "data4", "data5", "data6", "data7",

"data8", "data9", "data10", "data11", "data12"]

11.
− Generate public and private

keys for post-quantum

cryptography.

− Public_key, Private_key = generate_post_quantum_keys()

− Print the public_key

− Print the private_key

12.
− Build the Merkle tree and print

the root.

− Root_hash = build_merkle_tree(data)

− Print the root_hash

13. − Visualize the Merkle tree. − Visualize_merkle_tree(data).

14. − RESULT:

− PUBLIC KEY:

4ea4fcc3bf493475aec12686afcbe2e955e604843700347a7d2f4a871629d845e

20ce9fd2aa3e628d7c14aa5216401e043fab966b07984ba7646d3062a1626ec

− PRIVAT KEY:

a904509f4ee531f8cc525bbd72871d4fdb759e401f440a3e4e52bda24e4b3521

99678ec88765d12c7fdeb469e8ae1201e227e78f3a30e488c08977bbf461614e

− Merkle tree root:

6def4162caa73d21fffc2a371429ebb2b3bf8b8dd08b866e6d90a15e3657f5732

5abdd881b5815b930f048855585b2dc5a2812138bfcbfe6a3f7ddad31ecae2f

 International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 2067-2082

2081

Appendix 3.

Pseudocode for Example_3.

No Steps Description of Key Functions Explanation of Pseudocode

1.

Function

hash_data(da

ta):

− Take input `data` (string).

− Apply SHA-512 hash function to `data`.

− - Return the resulting hash as a string.

This function takes a string (data) as

input, applies the SHA-512 hashing

algorithm, and returns the resulting

hash.

2.

Function

generate_post_

quantum_keys

():

− Initialise an empty string `public_key`.

− Generate 128 random hexadecimal

characters and append them to `public_key.`

− Initialise an empty string `private_key`.

− Generate 128 random hexadecimal

characters and append them to `private_key.`

− -Return the `public_key` and `private_key`..

This function generates random

hexadecimal strings for both the public

and private keys.

It simulates the process of generating

keys for post-quantum cryptography,

specifically for Kyber (though this is a

simplified simulation).

3.

Function

build_merkle_t

ree (leaves):

− Set the initial tree to be the `leaves`.

− While the length of the tree is greater than 1:

− If the number of elements is odd, duplicate the

last element to ensure pairs.

− Hash each pair of consecutive elements and

create the next level.

− Set the tree to the newly created level.

− Return the single remaining element, which is

the root hash of the Merkle tree.

This function constructs a Merkle tree

by iteratively hashing pairs of elements

from the leaves until a single root hash

is obtained.

If the number of elements at any level

is odd, the last element is duplicated to

ensure pairs can be hashed.

4.

Function

visualize_mer

kle_tree

(leaves):

− Create an empty directed graph `G` using

`networkx`.

− Create an empty list of `levels` to store the

tree at each level.

− For the first level (level 0), hash each leaf and

add it to the `levels` list.

− Set the `current_level` to be the leaves

− While the `current_level` has more than one

element:

− Create a new list `next_level` to store the

hashes of pairs.

− If the number of elements is odd, directly add

the last element to `next_level`.

− Otherwise, hash each consecutive pair of

elements and append the result to `next_level.`

− Add the `next_level` to the `levels` list

− Set `current_level` to be the `next_level`

− Add nodes and edges to the graph for each

level:

− For each level, for each node, add the node

to the graph and assign the corresponding hash as a

label.

− For each node at levels greater than 0,

connect it to its parent (the corresponding node in the

previous level).

− Set the positions of the nodes:

− Assign vertical positions such that the root

node is at the top and leaf nodes are at the bottom

− Display the graph using `matplotlib`:

− Draw the graph with nodes and edges.

− Label the nodes with their respective hash

values.

− Set up a title for the plot and display it.

This function builds the Merkle tree,

constructs a directed graph using the

NetworkX library, and visualizes the tree

using Matplotlib.

The graph's nodes represent the hash

values at each level, and the edges represent

the parent-child relationships between

nodes at consecutive levels.

The graph is displayed in a rotated

fashion (180°).

5.

Main

Program:

− Generate 12 data blocks (for example,

`block_data_1`, `block_data_2`, ...,

`block_data_12`).

The main program generates a set of 12

data blocks and processes them to create a

Merkle tree. It also generates a pair of keys

for post-quantum cryptography (Kyber, in

 International Journal of Innovative Research and Scientific Studies, 8(1) 2025, pages: 2067-2082

2082

− Call the generate_post_quantum_keys()`

function to generate a public and private key.

− Print the generated public and private keys.

− Call the `build_merkle_tree()` function to

generate the Merkle tree root from the data blocks.

− Print the root hash of the Merkle tree.

− Call the `visualize_merkle_tree()` function

to visualise the Merkle tree.

this case) and prints both the public and

private keys.

It then builds the Merkle tree from the

data, prints the root hash, and visualizes the

tree.

6. RESULT:

GENERATING POST-QUANTUM CRYPTOGRAPHY KYBER KEYS:

Public Key:

4a6f4ecb773b7f2366982d866c0c607fa76537a67dec3a96ba006407c270d20ce9251785dc4c10e01

87287104880d0d2adb96d22218f6e6ee09e7e9baef8633a

Private Key:

df5af0c22d9591834fec9d52f259008319628cb364775186aeec43760ae36cd5ae6d70356d8eafd3a2

4da064b7a08de964b987902945e485b13aee373bdf8cd6

MERKLE TREE ROOT:

Root of the tree:

bc7a280c9c308396333acf5f3f7a3683ebcace11c21e26f5b202cb0ec7471576788af8c3b055c3c2cc

5e3b920dccdae5a2cabc90ef2cc1ba1a24f7576bd2317f

