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Abstract 

Cervical cancer is among the top ten causes of death among women in the world, and early detection is imperative for 

effective treatment that may improve outcomes. Traditional methods developed for diagnosing cervical cancer usually fail in 

low-resource settings. This work developed an optimized hybrid CNN-RNN model, which combined the strengths of CNN 

spatial feature extraction with RNN temporal analysis for improved cervical cancer image classification. The paper is based 

on the analysis of the effectiveness of the hybrid model compared to standalone models like CNN, RNN, MLP, and LSTM. 

Each model was trained and then tested with a labeled dataset containing cervical cancer images, followed by hyperparameter 

optimization through a grid search. This yielded a very high validation accuracy of 89.64% with a low validation loss of 

0.3222, beating the standalone models with significantly lower accuracies: CNN and MLP at ~19%, RNN at 59.28%, and 

LSTM at 74.28%. The AP scores of the hybrid model were very high across classes, showing that the proposed model would 

be highly capable of minimizing false positives and negatives. This leads to the conclusion that the CNN-RNN model can 

provide a trustworthy diagnostic solution that is clinically applicable, especially in settings with limited resources. The high 

accuracy and the balance of precision-recall present an excellent opportunity for this tool to be used in early cervical cancer 

detection. Thus, it would support better patient outcomes and could lead to reduced mortality rates. 
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1. Introduction  

Cervical cancer remains one of the most serious global health problems; among the most frequent malignancies in 

women, especially in developing countries, the capabilities are minimal with regard to early detection and screening facilities 

[1]. According to Ginsburg et al. [2], more than 500,000 new cases of cervical cancer are diagnosed each year worldwide, 

with about 85% occurring in less well-resourced parts of the world. Accordingly, effective early detection methods are 

needed, which can reduce the high mortality burden associated with cervical cancer since early intervention has drastically 

improved survival rates, according to various studies [3]. For instance, some of the conventional methods of screening include 

the Papanicolaou test or Human Papillomavirus testing, which, besides being valuable tools, have been identified to possess 

several issues, including barriers in access and affordability and requirements for expertise in performing and interpreting 

such tests [4]. Therefore, in recent years, AI and deep learning have received considerable attention due to their promise to 

provide scalable, automated, and accurate diagnostic solutions even for resource-constrained settings [5]. 

While CNNs have become well-recognized in image recognition tasks, in more recent times, there has been considerable 

promise in medical imaging. This will allow automatic analysis of complex visual data and help detect diseases early in 

various medical fields [6]. However, this can hardly be attained using CNNs alone in tasks requiring temporal or sequential 

relationships since their capabilities are still eminently spatial feature extraction tasks [7]. For diseases like cervical cancer, 

whose disease progression may involve gradual morphological changes, capturing sequential patterns is essential for raising 

the accuracy bar for detection. Recurrent Neural Networks are suited explicitly to model such sequences since they retain 

information for a longer time, and they act perfectly in applications where there is a demand to understand data temporally 

[8]. Researchers have also proposed hybrid models that combine the CNN and RNN architectures, capitalizing on CNN's 

spatial feature extraction and RNN's sequential modelling capability. This improves the detection of cervical cancer [9]. 

With great potential, the optimal performance of hybrid CNN-RNN models requires very delicate tuning of 

hyperparameters, including learning rate, batch size, and the number of layers in CNN and units in RNN. According to Miao 

et al. [10], hyperparameter optimization is one of the most important ways to enhance the generalization capability, directly 

influencing two of the most important metrics of diagnostic accuracy: sensitivity and specificity. Still, often, it is a manual 

tuning where the process can be very labor-intensive, and the results are not always optimal [11, 12]. On, grid search has 

emerged as an automated systematic method for hyperparameter optimization in machine learning, which aims to explore 

prefixed ranges of values for every parameter to find the best combination to maximize model performance [13-15]. Grid 

search has seen significant success in optimizing more complex neural networks, allowing fine-grained tuning to improve 

model robustness and predictive accuracy [16]. 

This will develop a robust, optimized framework for cervical cancer detection, incorporating a hybrid CNN-RNN model 

and grid search-based hyperparameter tuning. Such a hybrid model extracts spatial features through CNN layers and later 

models temporal patterns through RNN layers, thus extracting strengths from both architectures. To optimize the model's 

diagnostic performance, a grid search is used to determine the optimal settings of the model's hyperparameters so that the 

model balances the sensitivity and specificity needed for reliable cancer diagnosis. Next, Sun et al. [17] extensively tested 

this optimized hybrid CNN-RNN model on one complete cervical cancer imaging dataset and benchmarked its performance 

with a conventional single-architecture model. In this work, the contribution of advanced feature extraction and recognition 

of sequential patterns has identified a new paradigm in automatic cervical cancer detection for possible early diagnosis and 

intervention in under-resourced healthcare settings, as visioned by Liu and Wang [18]. 

Ultimately, this study demonstrates hybrid AI models that further heighten diagnostic precision in cervical cancer, a need 

in global health, with innovative technology. The findings are likely to support the development of accessible diagnostic tools 

driven by AI that can be implemented to advance screening processes, especially in underserved regions where cervical 

cancer continues to be a significant burden. The novelty in this work includes the optimized hybrid CNN-RNN model for 

cervical cancer detection, integrating CNN for extracting spatial features and RNN for recognizing temporal patterns, thus 

generally enhancing diagnostic accuracy. The proposed research describes the development of a hybrid CNN-RNN model 

that performs better diagnoses, combining CNNs that detect spatial features and RNNs that provide temporal patterns. With 

exhaustive hyperparameter optimizations by grid search, this model reaches high sensitivity and specificity values essential 

for clinical applications. Large-scale testing on a comprehensive cervical cancer dataset enables the study to perform a 

comparative analysis with standalone CNN, RNN, MLP, and LSTM models. It highlights the advantages of the hybrid 

approach. The results mentioned above substantiate the contributions that this model could make toward the advancement of 

accessible AI-driven diagnostic tools, which are of value in under-resourced settings where cervical cancer remains a 

prevalent health burden. These findings thus contribute to the development of an emerging area of AI diagnostics and provide 

a robust framework for the early detection of cervical cancer that may clinically be useful, more so in resource-poor settings. 

Further, this research encourages efforts towards developing accessible artificial intelligence (AI) driven diagnostic tools 

suitable for resource-poor settings. At the same time, in-depth performance analysis established the effectiveness of the grid 

search-tuned model. Therefore, these findings help advance AI-based cervical cancer diagnostics and help provide a valid 

framework for early detection in clinical use, especially in under-resourced settings. 

 

2. Related Works 
In the last decade, AI methods have rapidly evolved in cervical cancer detection because of the growth of medical 

imaging data complemented by deep learning approaches. Early detection techniques, mainly the Papanicolaou test and 

testing for human papillomavirus, have played a significant role in the struggle to reduce mortality due to cervical cancer; 

however, these techniques also face their limitations in the form of access, affordability, and skilled cytologists [1]. Most 
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developing countries, therefore, are fostering automated solutions using AI that will further enhance efficiency and accuracy 

in cervical cancer screening. 

The CNNs are widely employed in medical image analysis because they enhance the ability to capture complex spatial 

features from images. In the case of cervical cancer detection, this technique has already been employed effectively, where 

morphological patterns indicative of precancerous and cancerous cells can be identified with remarkable success. Zhang et 

al. [19] did an experiment related to CNN usage in classification tasks concerning cervical cells and showed the potentiality 

of CNN in achieving a higher accuracy rate than traditional methods. Meanwhile, Kim et al. [20] implemented CNN-based 

automated cervical cancer screening with high sensitivity and specificity performance, further underlining the strengths of 

CNNs in detecting complex spatial patterns. Still, CNNs are limited in their temporal dependencies to model, yet they are 

crucial for capturing the time-varying progressive changes in cellular structures. 

In handling this need for temporal modelling, several medical applications in which data are intrinsically sequential have 

explored RNNs and their variants, such as LSTM networks. Precisely, LSTM networks have shown tremendous robustness 

in handling long-term dependencies. That makes them a direct candidate for modelling disease progression if sequential 

imaging is available. Wang et al. [21] conducted a time-series analysis of patient data with the use of LSTM networks and 

showed excellent performance in the estimation of cancer stages. However, RNNs and LSTMs lack spatial feature extraction 

capabilities; thus, neither can independently perform medical image analysis. Therefore, regarding cervical cancer detection 

involving high-dimensional image data, the usefulness of using RNNs or LSTMs as stand-alone methods is boundless for the 

task [22]. 

Among these, integrating CNN and RNN architecture has emerged as a promising approach by leveraging the strengths 

of both models. This hybrid architecture integrates CNN's strength in spatial feature extraction with RNN's handling of 

sequential data. It has been applied in various medical imaging domains, ranging from breast cancer detection to lung nodule 

classification, where considerable improvement in diagnostic accuracy has been observed Chen et al. [4]. Jiang et al. [5] have 

proposed a hybrid model combining CNN and RNN features in the context of cervical cancer. This outperformed the 

independent models and showed that spatial and temporal features are interdependent for correctly identifying disease 

progression. However, while hybrid models are effective, their performances are highly sensitive to hyperparameter' 

configuration, drastically affecting model generalization and diagnostic accuracy. 

One must follow hyperparameter tuning to get the most out of any deep learning model applied to medical data, as the 

model's performance usually directly influences clinical decisions. Grid search and random search are two of the most famous 

techniques in the hyperparameter optimization category; grid search has an immensely positive effect on systematically 

investigating the combinations of parameters inside the defined search space. Sharma et al. found that after the 

implementation of the grid search, sensitivity and specificity in their CNN model for the detection of tumors improved. They 

mentioned that this improves the robustness of the model. In work related to radiology by Xu et al. [23], a grid search was 

proposed for fine-tuning CNN parameters. This article was more accurate than traditional methods. Although the grid search 

was successful, very few studies have applied the approach in hybrid CNN-RNN models for cervical cancer detection; hence, 

this being a point of departure, the study tries to bridge that gap. 

This paper presents an optimized hybrid CNN-RNN model incorporating grid search-based hyperparameter tuning to 

detect cervical cancer. This model combines the spatial features of CNN with the temporal analysis provided by RNN to 

capture comprehensive features critical for diagnosing the disease. High sensitivity and specificity were implemented with a 

grid search to tune the essential hyperparameters, such as learning rate, batch size, and network depth. Overcoming the 

limitations seen in stand-alone CNN, RNN, and hybrid models due to the absence of a systematic optimization process, this 

methodology ensures that the developed AI-powered tool for cervical cancer diagnosis will be reliable and valuable, 

especially in low-resource healthcare settings. 

 

3. Materials and Methods 
This section discusses the dataset used, the pre-processing steps applied, the model architecture chosen, the hyper-

parameter tuning done for each model, the training and evaluation process, the comparative analysis between different 

models, and the statistical approach followed. 

 

3.1. Data Preprocessing  

The dataset used for the implementation of this study consists of cervical cancer images from a publicly available cervical 

cancer imaging database. This dataset has five different classes of data: cervix_dyk, cervix_koc, cervix_mep, cervix_pab, 

and cervix_sfi. Each class contains 5,000 images, amounting to 25,000 images in the dataset. These images represent several 

stages and morphological features related to cervical cancer detection. 

This dataset has an 80:10:10 split for training, validation, and test sets, respectively, ensuring a balanced number of 

classes in each set. Standard preprocessing on the data was performed; the images were resized to 224 × 224 pixels to maintain 

uniformity with the input size as required by CNN architecture. Heavy data augmentation was performed to add significant 

variability to the data, helping with class balance and reducing overfitting. Rotation was between -20 to +20 degrees; zoom 

was within the range of 0.2, and horizontal and vertical flips had a 50% chance. 

 

3.2. Model Architecture 

The proposed architecture is based on a deep learning model incorporating Convolutional Neural Networks and 

Recurrent Neural Networks for extracting spatial and sequential features of cervical cancer cell images, respectively. While 

the CNN extracts relevant spatial features of texture, color, morphological patterns, etc., the RNN, comprising an LSTM 
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network, processes the features sequentially to understand time dependency and progressive cellular changes. This study 

used three models: Hybrid CNN-RNN, CNN, and RNN. 

a. The CNN architecture consists of five convolutional layers, each followed by an activation function of type ReLU, 

and then max-pooling layers to reduce the spatial dimensionality. Kernel sizes are selected as 3 × 3, with 2 × 2 max-

pooling layers used for down-sampling the feature maps. Batch normalization was applied to stabilize and accelerate 

the training process. 

The ReLU activation function is defined as: 

 

𝑓(𝑥) = max(0, 𝑥)       (1) 

 

𝑓(𝑥) represents the output of the ReLU function when applied to an input 𝑥. 
𝑥is the input values or activation from the previous paper. This could be the weighted sum of the input into a neuron 

or value within a feature map. 

b. RNN Layer: After reshaping the output from CNN layers, this feeds into an LSTM layer of size 128. To handle 

overfitting, a dropout regularization of 0.3 is used. 

c. Fully Connected Layer: The last layer is a fully connected dense layer with a softmax activation function that will 

output the probability distribution across the five classes. The softmax function is defined as: 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) = 
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

      (2) 

 

Where 𝑧𝑖 represents the output for each class 𝑖,and 𝐾 is the total number of classes (in this case, five). 

 

3.3. Hyperparameter Tuning with Grid Search 

A systematic grid search approach was used to scan several combinations related to the essential hyperparameters to get 

the optimum performance of the proposed hybrid CNN-RNN model. Running a grid search ensures that all values within a 

specified range have been tried out. Hence, the model may converge to the best possible setting related to accuracy, 

sensitivity, and specificity. In this work, major tuned hyperparameters are CNN output channels, RNN hidden size, and the 

learning rate because these parameters greatly influence feature extraction and learning capabilities. 

CNN Output Channels: In this work, the number of output channels in the CNN layers was changed to two values, 16 

and 32, to investigate the impact of feature map depth on spatial feature extraction. This can be computationally lighter by 

using a smaller output channel size, say 16, but results in a loss of capture of finer details in the input images. By increasing 

the output channels to 32, richer image features could be represented at higher computational costs. These values will be 

tested to determine the right balance between the depth of features extracted and computational efficiency, which is essential 

for the correct classification of the stages of cervical cancer using the model. 

 

𝐶 ∈ {16, 32}         (3) 

RNN Hidden Size (rnn_hidden_size): This is the size of the hidden state in the RNN layer (LSTM); for this, two values 

were considered in experiments: 128 and 256. This hyperparameter determines the output space dimensionality of the RNN 

and, thus, the capacity of the model to capture the dependencies of the sequence in the features extracted. This means a hidden 

size 128 may capture only the simple temporal pattern. In contrast, for a hidden size of 256, the model will be more powerful 

in modelling complex temporal dependencies. In comparing these configurations, the grid search helps identify the hidden 

size which best complements the spatial features extracted by the CNN component. 

𝐻 ∈ {128, 256}        (4) 

Learning Rate (learning_rate): Two learning rate values, 0.001 and 0.0001, were considered to balance convergence 

speed and stability. While the training will go faster with a higher learning rate, 0.001, convergence might be reached faster, 

but at the same time, it risks overshooting the minima, at least for complex networks. Conversely, lower learning rates, such 

as 0.0001, are generally slower yet have more stable descents toward the optimal. Grid search will be able to test these values 

in search of the rate that best balances the speed with accuracy. 

𝛼 ∈ {0.001, 0.0001}       (5) 

This hyperparameter grid search has been performed using the GridSearchCV function provided by Keras. Each 

combination is evaluated based on the model's performance on the validation set. Since this is an exhaustive search in the 

hyperparameter space, it allows one to find the best configuration for the hybrid CNN-RNN model and get a reliable, 

optimized architecture for cervical cancer detection. 

 

3.4. Performance Metrics 

Several metrics were considered in testing the performance of the hybrid CNN-RNN model, with the view to ensuring 

that diagnostic performance assessments are comprehensive, as would be expected in a medical situation where FNs and FPs 

can have significant ramifications. These included accuracy, sensitivity (recall), specificity, the F1-score, and the AUC-ROC 

curve. Each metric bears on a different aspect of the model's performance. 

1. Accuracy (Acc.): Accuracy is the measure of the ratio of correctly classified samples out of the total samples. It can 

be calculated as: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝑐𝑐. ) = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (6) 

 

TP-True Positives are the correct predictions for positive cases, 

TN signifies the True Negatives, which represent the correctly predicted negative cases. 

FP refers to the number of positive cases that were wrongly predicted. 

FN is the number of cases whose negativity has been wrongly predicted. 

While accuracy provides an overall measure of performance, it might be misleading for imbalanced datasets, such as medical 

ones, when one class is prevalent-for example, "no cancer.". 

2. Sensitivity (Sen): Recall, or sensitivity, refers to the proportion of actual positive cases correctly predicted by the 

model. Therefore, in medical diagnosis, sensitivity becomes one of the essential parameters since it reflects how 

well a model identifies cervical cancer cases by offering a minimum number of false negatives. High sensitivity 

means most patients with the conditions would be correctly diagnosed to receive early interventions. Sensitivity can 

be computed as: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑆𝑒𝑛. ):
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (7) 

 

Sensitivity refers to the proportion of true cases a model will detect. Thus, high sensitivity in this context means this 

model effectively detects true cervical cancer cases and reduces undetected cases. 

 

3. Specificity (Spec.): Specificity is the ratio of true negatives- the number of correctly predicted negative cases. It 

reflects one side of the balance when assessing the model's ability to avoid false positives, which is as important in 

clinical use because it could save the patient from unnecessary anxiety or treatments due to the incorrect diagnosis 

of cervical cancer. Specificity is defined as: 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆𝑝𝑒𝑐. ) = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
     (8) 

 

A high specificity value means the model is good at correctly identifying non-cancerous cases, thus reducing the number 

of healthy patients who might have been wrongly classified as having cancer. 

4. F1-score: The F1-score is the harmonic mean between precision and recall. It measures balance in an imbalanced 

class distribution by considering the model's ability to detect positive cases and the precision of the predictions. 

Since the F1-score considers false positives and negatives, it is a single medical diagnosis metric to judge the model's 

general balance. It is defined as: 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑆𝑒𝑛.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛.
     (9) 

 

Where: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
       (10) 

A high F1-score would mean the model keeps both a high precision number of low false positives and a high sensitivity. 

The number of low false negatives is significant for reliable clinical diagnosis. 

 

5. Area Under the Receiver Operating Characteristic (AUC-ROC) Curve: The AUC-ROC curve describes the degree 

of capability of the model to separate classes between positive and negative, considering a range of thresholds. In a 

ROC curve, plots of true positive rate against false positive rate are drawn at different threshold levels, while the 

AUC is the area under this ROC curve. An AUC of 1.0 depicts perfect classification, while an AUC of 0.5 suggests 

no discriminatory power. Most importantly, the AUC-ROC summarizes model performance across all possible 

thresholds and hence provides a robust estimate of the ability of the model to distinguish classes in medical 

diagnosis. 

 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅𝑑(𝐹𝑃𝑅)
1

0
      (11) 

 

Where TPR (True Positive Rate) is sensitivity, and FPR (False Positive Rate) is 1 - specificity. 

In summary, these metrics comprehensively assess the diagnostic performance of the model, with accuracy being a 

generalized measure, sensitivity and specificity targeting clinical relevance, the F1-score balancing precision and recall, and 

the AUC-ROC providing a threshold-independent assessment. The application of these metrics ensures that this model will 

be accurate and reliable in detecting cervical cancer, hence minimizing the risks of false positives and negatives, which are 

of prime importance in healthcare applications. 

 

4. Results and Discussion 
The following section discusses the performance of the optimized hybrid CNN-RNN model developed for cervical 

cancer detection, considering in-depth discussions of the implications of the results. A hybrid model that combines CNN for 
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spatial feature extraction with RNN for sequential analysis was systematically tuned using a grid search to optimize critical 

hyperparameters. It is possible through a dual approach: CNN captures the intrinsic visual features of cervical cancer cells, 

while RNN processes temporal patterns of such captures to assess disease progression critically. 

 

4.1. Model Performance Overview 

This section summarizes the overall performance of this model, underlining that the most vital innovative improvements 

in diagnostic accuracy were realized through this hybrid CNN-RNN. Give reasons why a hybrid approach was used, from a 

mixture of CNNs for spatial feature extraction to RNNs for temporal pattern recognition; give a proper line on how this may 

help in cervical cancer detection, which relies on spatial information and morphological changes over sequences. Briefly 

compare this with the traditional approaches and stand-alone CNN and RNN models to emphasize the superiority of the 

hybrid model. 

 

4.2. Model Training and Evaluation 

The experiment was performed with the Cervical Cancer dataset, which was divided 80:10:10 for training, validation, 

and testing, and preprocessing was done through resizing and data augmentation. A hybrid CNN-RNN model was trained 

where CNN layers learned spatial features and an RNN-LSTM layer learned sequential patterns. Early stopping analysis 

showed that the CNN-RNN model learned optimal performance effectively at epoch 17, even better than individual models. 

CNN ended prematurely at epoch 5, which reflected underfitting due to a lack of sequential learning. At the same time, RNN 

and LSTM models trained longer (epochs 49 and 43, respectively) but were inefficient without spatial feature extraction. 

MLP ended very prematurely, which reflected its inability to handle complex spatial-temporal tasks. The CNN-RNN hybrid 

generally exhibited the optimal trade-off between spatial and temporal feature learning and performed better than single-

architecture models for detecting cervical cancer. Table 1 shows the epochs of each model implemented. 

 
Table 1.  

Early Stopping Epochs for Models in Cervical Cancer Detection. 

Model Epoch Early Stopping was Triggered 

CNN-RNN 17 

CNN 5 

RNN 49 

MLP 5 

LSTM 43 

 

 
                     (a) 
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                     (b) 

 
                 (c) 

 
               (d) 

 
(e) 
Figure 1(a-e).  

Models Training and Validation Accuracy and Loss. 

 

Figures 1a-e depict the training and validation loss and accuracy curves of CNN-RNN, CNN, RNN, MLP, and LSTM 

models in cervical cancer screening. The CNN-RNN model demonstrated improved learning patterns with early stopping at 

epoch 17, with steady loss curves and above 80% validation accuracy, reflecting its balanced spatial and sequential 

information extraction. The reverse was true for the CNN model, which started early, stopping much earlier at epoch 5, a 

sharp drop in training loss, but poor generalization and unstable validation accuracy, characteristic of underfitting and poor 

temporal feature learning. The RNN model finished later at epoch 49, with slower convergence; it improved temporal learning 

compared to CNN, but was still hampered by its failure to learn spatial patterns. Similarly, the MLP model that stopped at 

epoch 5 had poor training performance with fluctuating and high losses, revealing its unsuitability for addressing medical 

images' spatial and sequential complexities. 
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The RNN model variant LSTM gained early stopping at epoch 43 following pervasive training, indicative of its strengths 

in sequential long-term dependence modelling but weakness in spatial feature extraction inherent in image-based diagnosis. 

Although the RNN and LSTM models were moderate in sequential learning, their inability to extract spatial features limited 

their general performance compared to the CNN-RNN hybrid. The overall bottom line of the comparative result is that the 

CNN-RNN hybrid model, with its previous convergence, lesser overfitting, and better validation stability, outperformed 

single CNN, RNN, MLP, and LSTM models. The poor performance of CNN and MLP resulted from underfitting and a lack 

of temporal modelling. At the same time, RNN and LSTM models suffered from sluggish convergence and lower accuracy 

due to the absence of spatial context. Overall, the results underline that hybrid models like CNN-RNN are more suitable for 

advanced diagnosis tasks, e.g., cervical cancer detection, where spatial and temporal cues are important. 

 

   
(a)               (b)           

   
   (c)              (d) 

 
(e) 
Figure 2. 

(a-e). Models' Confusion Matrix. 

 

The confusion matrices in Figure 2 indicate the classification performance of the five models over five cervical cancer 

classes: cervix_dyk, cervix_koc, cervix_mep, cervix_pab, and cervix_sfi. The CNN-RNN model has the best performance 

with high values on the diagonals and minimal misclassifications, indicating its ability to extract spatial and temporal 

information. In contrast, the MLP and CNN models performed poorly, labeling all the samples as cervix_dyk and being 

unable to handle sequential dependencies or subtle class differences. The RNN model was decent but did not handle class 

overlaps, particularly among cervix_koc, cervix_mep, and cervix_sfi, since it did not have spatial feature extraction. The 

LSTM model improved RNN's ability to capture long-term temporal dependencies but had significant misclassifications, 
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especially between cervix_koc and cervix_sfi. Generally, the CNN-RNN hybrid worked best compared to all the models, 

demonstrating that combining spatial and sequential learning is crucial for complex medical image classification tasks like 

cervical cancer detection. 

 

    
(a)           (b) 

   
   (c)              (d) 

 

 
       (e) 
Figure 3 (a-e).  
Models ROC-AUC Curve. 

 

Figures 3a–3e provide the ROC curves and AUC values of five models—CNN-RNN, CNN, RNN, MLP, and LSTM—

on cervical cancer data, in the five classes: cervix_dyk, cervix_koc, cervix_mep, cervix_pab, and cervix_sfi. The CNN-RNN 

model achieved outstanding performance with AUC values close to perfect, between 0.98 and 0.99, indicative of high-quality 

spatial and temporal feature extraction required for accurate multi-class classification. On the other hand, the CNN and MLP 

models produced flat ROC curves along the diagonal with an AUC of 0.50, indicating performance on par with random 

guessing since they could not capture temporal patterns. The RNN model achieved fair AUC scores ranging from 0.84 to 

0.92, recognizing sequential patterns but not spatial detail. At the same time, the LSTM model was better with AUC scores 
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ranging from 0.92 to 0.97 with long-range dependency modeling, but also without spatial feature learning. Overall, the CNN-

RNN combined model significantly outperformed all other setups, confirming that spatial and sequential learning fusion is 

critical for effective cervical cancer detection. 

 

  
(a)        (b)     

  
   (c)           (d) 

 
(e) 
Figure 4.  

Models PR Curve. 

 

Figure 4 presents the precision-recall (PR) curves and average precision (AP) values of CNN-RNN, CNN, RNN, MLP, 

and LSTM models for the five classes of cervical cancer: cervix_dyk, cervix_koc, cervix_mep, cervix_pab, and cervix_sfi. 

The CNN-RNN model had superior performance, with AP values ranging from 0.93 to 0.98 and PR curves positioned in the 

top-right corner, indicating a perfect trade-off between precision and recall. On the other hand, the CNN and MLP models 

had low AP scores of about 0.20, which indicates random-guess-level discrimination because they lack sequential and spatial 

processing. The RNN model achieved mid-range AP values between 0.61 and 0.81 but lagged with minimal spatial feature 

extraction. In contrast, the LSTM model was better with AP values of 0.77 to 0.91 by utilizing long-term sequential 

relationships but falling short of the CNN-RNN hybrid with minimal spatial analysis. Overall, the CNN-RNN model ranked 
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superior to others, demonstrating improved capability in handling complex spatial-temporal patterns, which is significant in 

accurate and reliable cervical cancer classification. 

 

4.3. Model Performance Evaluation 

Table 2 compares the training and validation accuracy and loss of CNN-RNN, CNN, RNN, MLP, and LSTM models for 

cervical cancer classification. The CNN-RNN hybrid model exhibited the best performance with nearly perfect training 

accuracy and extremely low training loss of 0.0030 and high validation accuracy of 89.64% with validation loss of 0.3222, 

indicating excellent learning and good generalization with some overfitting. On the other hand, the CNN and MLP models 

performed poorly, with around 19–20% train and validation accuracy and high losses of 1.6095 and 1.6096, respectively 

meaning that they could not learn any meaningful patterns and were operating close to random guessing. The RNN model 

moderated with 62.30% training and 59.28% validation accuracy. In comparison, the LSTM model did better than RNN by 

small margins of 77.16% training and 74.28% validation accuracy, meaning that they could model sequential patterns but 

missed the spatial feature extraction, which brought down their overall performance compared to the CNN-RNN hybrid. 

Overall, the CNN-RNN model's spatial and temporal learning together made it outperform all the models by a significant 

margin, making it the most suitable for cervical cancer classification. While the RNN and LSTM models learned sequence 

dependencies very well, their inability to analyze spatial features made them perform poorly. The CNN and MLP models, 

lacking spatial and temporal processing, could not perform significantly. These findings highlight how the fusion of spatial 

and sequential feature extraction, such as in the CNN-RNN model, is of utmost significance in complex diagnostic tasks like 

cervical cancer detection, where practical and reliable classification can have far-reaching implications on medical decision-

making and patient outcome measures. 

 
Table 2.  

Performance Metrics for Different Models Implemented. 

Model Training Acc. Validation Acc. Training Loss Validation Loss 

CNN-RNN 100 89.64 0.0030 0.3222 

CNN 19.38 19.24 1.6095 1.6095 

RNN 62.30 59.28 0.9573 1.0188 

MLP 19.96 19.76 1.6096 1.6096 

LSTM 77.16 74.28 0.6246 0.6955 

 

5. Discussion 
These performance metrics of the models again point towards how effective the hybrid CNN-RNN model is at detecting 

cervical cancer. Indeed, the hybrid model had a high validation accuracy of 89.64%, while the CNN and MLP models were 

far behind with close to 19% validation accuracies, scarcely above random guesses considering the number of classes in this 

problem. This large gap underlines the hybrid model's capability to capture essential spatial and temporal patterns important 

for correctly classifying cervical cancer stages. Furthermore, this low validation loss of 0.3222 points to good generalization 

by the hybrid model, whereas for the CNN and MLP models, their higher identical training and validation losses are 1.6095 

and 1.6096, respectively, which suggests that those models failed to learn any meaningful patterns. 

While being stronger in performance compared with CNN and MLP, its performance showed only a moderate validation 

accuracy of 59.28% and 74.28%, respectively. This gain probably comes from the fact that RNN and LSTM are far superior 

in their sequential processing and, therefore, capture temporal dependencies much better than CNN and MLP. However, the 

RNN, with its improved performance and lowest loss of 1.0188, and LSTM, with a loss of 0.6955, show that there is a limit 

to how much can be achieved without spatial feature extraction due to their slower convergence and lower accuracy obtained 

compared to the CNN-RNN hybrid model. The balanced training and validation losses, together with the validation accuracy 

of the hybrid approach, point out that incorporating CNN and RNN components offers a more integral understanding of the 

data with both spatial and sequential dependencies. 

Most of the optimization of the hybrid model was also accounted for using grid search for hyperparameter tuning, 

whereby it reached a high accuracy without facing the problem of overfitting. The optimized hyperparameters, including 

learning rate, batch size, and dimensions of the hidden layers, enhanced performance by reducing unnecessary complexity 

while retaining robust learning capability. This tuning was very effective in enhancing the convergence speed of the CNN-

RNN model, reflected in the rapid drop in its training loss to 0.0030 compared to that of the other models. 

Strong precision and recall, as complemented by high AP scores in all classes, underline the clinical implications of the 

model. The strong performance in precision-recall testifies to the fact that a hybrid model can minimize false positives and 

false negatives precisely, which is expected from any diagnostic tool in the medical field. These high AP scores indicate that 

the model can maintain high precision at different recall levels, setting it fit for real applications since high accuracy and 

reliability are core to performance. This level of performance positions the CNN-RNN hybrid model as a feasible diagnostic 

tool, especially in resource-limited healthcare environments where accurate, early detection of cervical cancer could make 

all the difference in patient outcomes. 

In summary, these quantitative observations validate the hybrid model of CNN-RNN for diagnostics, with results that 

give good prospects for scalability and applicability in real clinical settings. Its balanced architecture compensates for the 

low performance of simpler models, such as CNN, MLP, RNN, and even LSTM, through the proper combination of spatial 

and temporal processing, leading to high diagnostic accuracy and reliability. These results further indicate the immediate 
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need for hybrid models in complex medical imaging tasks and open the door to future research for further enhancement in 

model tuning, use of more extensive data, and expansion of applicability towards other diagnostic challenges in medical AI. 

These results place the Hybrid CNN-RNN model as a relevant diagnostic tool in resource-constrained settings, as it 

showed high average precisions on balancing precision and recall over all classes. This model's strong performance at 

correctly identifying positive cases, with fewer false positives and negatives, highly justifies its use for early detection of 

cervical cancer, which is a key factor in reducing mortality rates in resource-poor settings. Besides, good generalization of 

the validation data shows its potential to be scalable and applied within real-world screening processes. 

This study validates a hybrid model of CNN-RNN as a powerful tool in cervical cancer detection by effectively 

combining both spatial and temporal feature extraction to achieve high diagnostic accuracy. These results demonstrate the 

limitations of simpler architectures such as CNN and MLP and further establish the importance of hybrid models in capturing 

the complexities in medical imaging tasks. Further work could be done in refining hyperparameter tuning techniques, 

integrating with larger datasets, or extending to more diagnostic applications, ways through which the model's utility and its 

impact in medical AI are further extended. 

 

6. Conclusion 
This work proposes a hybrid CNN-RNN model for detecting cervical cancer that will significantly improve classification 

performance by combining spatial and temporal feature extractions. Results: The proposed model offers an appreciable 

validation accuracy of 89.64% with a low validation loss of 0.3222, showing that the model generalizes robustly and predicts 

reliably. Meanwhile, the CNN-RNN hybrid performed relatively well compared to single models, but the LSTM followed 

with a decent 74.28% validation accuracy with a higher validation loss of 0.6955. On the other hand, the CNN and MLP 

models attained only about 19% in their respective validation accuracies, which means they were no better than random 

guesses on this multi-class task. This superiority in the performance of the CNN-RNN model underlines the efficiency of 

integrating CNN spatial processing capabilities with RNN sequential analysis, thus making this technique a promising tool 

for the accurate and early diagnosis of cervical cancer. 

While it shows promising performance, it still suffers from limitations regarding computational load and generalization 

to diverse datasets. Future work will focus on dataset enlargement by adding more variable samples, considering demographic 

and clinically diverse data, and making the model more adaptable to real-world applications. Moreover, reducing the 

computational burden through model compression or creating lightweight architectures would undoubtedly enhance its 

implementability in resource-constrained health facilities. 

Further improvements in hyperparameter optimization, such as Bayesian optimization or genetic algorithms, could be 

highly useful in enhancing model performance even further and more efficiently. Furthermore, future work may involve 

ensemble methods or attention mechanisms to refine this model's understanding of nuanced features, which will enhance its 

precision in borderline or ambiguous cases. 

Generally, this study serves as the basis for introducing hybrid models in cervical cancer diagnosis, among other 

diagnosis-related fields, for better accuracy and early detection of diseases so that patient outcomes can be improved, whether 

inside or outside major developed areas. 
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