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Abstract 

This paper proposes an improved PV power forecasting model by applying a modified method to three forecasting techniques: 

PSO-ANN, GRU, and LSTM. The key enhancement focuses on improving prediction accuracy during nighttime periods 

when PV systems do not generate power, an area where traditional models often yield high error rates. Reducing these 

inaccuracies is vital to ensure reliable energy planning and dispatch. The case study uses one-year, minute-by-minute time 

series generation data from a 160 kWp PV plant in Thailand. Before the modification, LSTM outperformed other methods 

with an MAPE of 3.91% and an RMSE of 233.09 kW. After applying the modification, adjusting nighttime power outputs 

to zero, the modified LSTM model achieved improved performance, with an MAPE of 2.97% and an RMSE of 232.64 kW, 

outperforming the modified PSO-ANN and GRU models. The simulation results confirm that this simple yet effective 

adjustment significantly enhances prediction accuracy by addressing a key limitation of conventional models: inaccurate 

power estimates during non-generating periods. Accurate PV power forecasting is essential, particularly in the early-stage 

investment and operational planning of PV systems. 
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1. Introduction  

Electric power is the world’s main energy source and is widely used for daily use or any business operation [1, 2]. 

However, the vast majority of electric power generation comes from coal-based energy sources, which have a huge 

environmental impact due to the increasing amount of carbon dioxide from electricity generation. The international 

community, therefore, holds a joint meeting to discuss carbon reduction together, of which Thailand is International Energy 

Agency [3]; Arango-Aramburo et al. [4]; Østergaard et al. [5] and Khotsriwong et al. [6]. As a result, the power development 

plan, which serves as a master plan for the nation’s long-term energy supply for 15 to 20 years and marks the beginning of 

planning for the development of a new distributed generation system, is being prepared more quickly by the Ministry of 

Energy, Thailand. Developing power transmission systems and purchasing electricity from abroad creates stability and 

sufficiency for electricity demand. It can support the improvement of the economy, society, and quality of life of the people. 

It plans to increase electricity generation from renewable sources, especially solar energy, from 14% today to 31% by 2032 

[7]. 

Installing Photovoltaic (PV) power generation systems requires operators to know electric power and output value to 

analyze the investment worthiness [8-11]. A photovoltaic power forecasting model was developed to address this problem, 

and a photovoltaic power forecast model was continuously developed with various algorithms that can be applied to predict 

the energy accurately [12, 13]. As an illustration of advanced computational techniques, consider several widely used 

methods: fuzzy logic control (FLC) for handling uncertainty and approximate reasoning, genetic algorithms (GA) for 

optimization based on natural selection, particle swarm optimization (PSO) for simulating social behavior in search of 

solutions, artificial neural networks (ANN) for modelling complex patterns and decision-making processes, and artificial bee 

colony algorithms (ABC), which mimic the foraging behavior of bees to solve optimization problems. Each of these 

techniques has been applied across various fields for tasks such as optimization, decision-making, and predictive modeling 

[14-19]. The use of deep learning (DL) algorithms to forecast the PV power production plants' power output has grown in 

popularity. Various models have been employed to assess their predictive accuracy. Several separate models have been tested 

and shown to be successful, including GRU, RNN, and LSTM. In addition, hybrid models, which combine the strengths of 

different architectures, have also been explored. The PV power production forecasting has shown considerable promise with 

a number of hybrid DL algorithms. CNN-GRU, CNN-LSTM, CNN-BiGRU, and CNN-BiLSTM are some of the most 

promising designs; they all use convolutional neural networks (CNNs') advantages in conjunction with sophisticated recurrent 

units to increase prediction accuracy [20-23].  

Many researchers are interested in studying PV power forecasting, which can be compared with previous studies and 

existing works, as shown in Table 1. However, using these algorithms still gives poor predictability of the solar system’s 

output power. The characteristics of the separate algorithms were then integrated to create a mixed prediction model, such as 

a neural network-based mixed prediction technique. Particle Swarm Intelligence Optimized-based Artificial Neural Network 

prediction greatly enhanced the prediction outcomes [24, 25]. Forecasting using DL techniques is a simple forecasting method 

and simple modelling, but output forecasting may be an overlooked point that is a significant error. Therefore, this paper 

develops a DL forecasting model to make predictions more accurate by incorporating another function. This paper used data 

on solar photovoltaic power generation systems in the central region of Thailand, with an installed size of 160 kWp. Accurate 

forecasts would benefit stakeholders in decision-making regarding investment planning for solar power plant installations. 

 
Table 1.  

Previous studies comparison. 

References Techniques Input Data Shot Summary 
Outstanding 

Techniques 

Seyedmahmoudian, 

et al. [26] 

PSO, DE, and the 

combination of 

both methods 

known as DEPSO. 

The PV irradiance 

(W/m2), Ambient 

temperature (oC),  

PV power output (W). 

Mathematically 

forecasting the short-term 

PV output power. 

DEPSO 

Li, et al. [20] CNN and LSTM. Date hour, PV power 

output (W). 

PV output power 

prediction via a hybrid 

deep learning approach. 

Hybrid CNN and 

LSTM 

Kuo, et al. [21] ANN, LSTM, and 

GRU model. 

Weather, and PV data. Forecasting of PV power 

in the short term suggests 

a new method for 

analyzing sky images to 

determine cloud coverage. 

The cloud 

coverage rate via 

the deep learning 

methods GRU 

and LSTM. 

Sansine, et al. [27] The PSO algorithm 

combined with 

XGBoost (PSO-

XGBoost), the 

PSO combined 

with Gradient 

Ambient temperature 

(oC), Humidity (%), 

Atmospheric pressure 

(mbar), Wind velocity 

(m/s), Dew point 

temperature (oC) and the 

Solar Irradiance 

Forecasting. 

PSO-LSTM 
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References Techniques Input Data Shot Summary 
Outstanding 

Techniques 

Boosting 

Regression (PSO-

GBR), and PSO-

LSTM. 

wind direction, amount 

of rain, Solar irradiance 

(W/m2), and the clear-sky 

model. 

Gumar and Demir 

[28] 

ANN, PSO-ANN, 

ABC-ANN, and 

GA–ANN. 

Date, Time, Humidity, 

Atmospheric pressure,  

Panel temperature, 

Ambient temperature, 

PV irradiance (W/m2), 

PV power output (W). 

Predicting the PV power. 

Develop the hybrid model 

with an ANN base. 

PSO-ANN 

Devi and 

Srivenkatesh [29] 

Artificial Gorilla 

Troops Optimizer 

(AGTO), TLO, 

RNN, LSTM, 

KNN. 

Weather data, PV power 

output (W). 

A metaheuristic 

optimization algorithm 

was applied for the PV 

power forecasting. 

GC-TLBO 

Poti, et al. [19] Physical approach 

PV power 

forecasting. 

Irradiance (W/m2), PV 

panel temperature (oC), 

ambient temperature (oC) 

and PV panel 

specification. 

Forecasting of PV power 

generation in the short 

term. Examination of the 

correlation of PV power 

on summer days versus 

winter days. 

No comparison 

with other 

methods 

Khotsriwong, et al. 

[6] 

CNN, RNN, GRU, 

BiGRU, 

LSTM,and,   and 

BiLSTM. 

The hybrid models: 

CNN-GRU, CNN-

BiGRU, CNN-

LSTM, and CNN-

BiLSTM. 

Photovoltaic (PV) power 

output (W), solar 

radiation (W/m2),  

PV panel temperature 

(oC), and wind velocity 

(m/s) data. 

Short-term photovoltaic 

power output prediction. 

CNN-BiGRU 

BiLSTM 

Abumohsen, et al. 

[30] 

LSTM, GRU, and 

RNN. 

Date (dd), hour (hr), 

weekday, week number, 

month, year, temperature 

(oC), and energy (Wh) 

 

Load forecasting in power 

system. 

GRU 

Miraftabzadeh, et al. 

[22] 

The Linear, Dense, 

CNN, and LSTM 

techniques have 

been assessed. 

Date hour, PV power 

output (W). 

Introduces the transfer 

learning approach for 

utilizing trustworthy, 

trained deep learning 

algorithms in day-ahead 

PV power forecasting. 

LSTM, 

Transferred 

LSTM 

Our work PSO-ANN, GRU, 

and LSTM 

techniques with 

modifications. 

 

Date hour, PV irradiance 

(W/m2), Ambient 

temperature (oC), and  

PV power output (W).  

Long-term PV power 

forecasting: A 

comparative analysis of 

PV power forecasting 

results obtained by 

applying prominent deep 

learning techniques on a 

real-site solar rooftop. 

M-LSTM 
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Figure 1. 

A proposed framework that uses deep learning techniques to anticipate PV power and incorporates the historical power 

production era for improved accuracy is presented. 

 

Figure 1 shows the proposed flow of PV power forecasting using deep learning techniques by considering the realized 

power production period. As a result, the main contributions of this study can be summarized as follows: 

• This paper presents a comparative analysis of PV power forecasting results obtained by applying prominent deep-

learning techniques on a real-site solar rooftop in Thailand. The study aims to elucidate the effectiveness and 

performance of these techniques in accurately forecasting PV power generation.  

• The PV power forecasting techniques were compared, including PSO-ANN, GRU, and LSTM techniques. The 

performance of these techniques will be evaluated against actual PV power data using key indicators such as MAE, 

MAPE, RMSE, and R2.  

• This paper developed a forecasting model for the PV power generation system, which involves considering the actual 

power production periods by incorporating the observed power generation periods.  

The remaining section of the paper is organized as follows: The PV power forecasting techniques are presented in Section 

2. Section 3 introduces the forecasting technique. A case study of the PV power generating system, the accuracy analysis, 

and the forecasting model are presented in Section 4. Section 5 presents the forecasting results and provides a detailed 

discussion of the model’s accomplishments. Finally, Section 6 summarizes the key findings of the study, highlighting the 

most successful models and offering suggestions for future work or improvements in PV power forecasting methodologies. 

 

2. The PV Power Forecasting Methods 
Various techniques, including statistical, machine learning, heuristic, and physical approaches, may be used to predict 

the electricity output of solar systems. These techniques are based on two main approaches to modeling PV power forecasting. 

One approach is physical, which requires knowledge of photovoltaic material properties, system metadata, and the 

information requirements of climate conditions. A second approach is a data-driven approach that requires operational data 

on the PV system to train the forecasting model. A data-driven approach can be applied after the PV system is installed and 

running, and there is sufficient data to train/calibrate the model. The drawback of the physical model is that it requires too 

many input variables. Heuristic models are introduced to minimize the number of input variables required in PV power 

forecasting. Because these models rely on the relationship between climatic data, including solar irradiance, temperature, and 

PV power production, they are categorized as data-driven models. By reducing input complexity, these models aim to 

maintain or even enhance prediction accuracy while improving computational efficiency. Several heuristic models have been 

developed on similar principles for forecasting the PV power from irradiation and module temperature, but they differ only 

in optimal model parameters. Heuristic models have the main advantage that parameters can be obtained from historical data 

of PV power generation systems with ease. To predict PV output power generation, statistical methods and machine learning 

techniques are often employed, utilizing historical data on PV power production. Both of these approaches are data-driven, 

meaning they depend heavily on the availability, quality, and accuracy of operational data to build reliable forecast models. 

By analyzing past performance and identifying patterns within the data, these methods enable more accurate predictions of 

future PV power output, providing valuable insights for energy management and grid stability. Usually, the more historical 

data available, the better the PV forecasting model can be trained in operating behavior under different climatic conditions, 

and hence the better the forecast accuracy [25, 31, 32]. While the physical technique requires a physical parameter as input, 

the data-driven approach, depicted in Figure 2, requires historical data to train. 
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Figure 2. 

Schematic of the data-driven and the physical approaches for PV power forecasting. 

 

3. The Forecasting Techniques 
3.1.  Artificial Neural Networks 

The ANNs are made up of several non-linear arithmetic units, or neurons, and their connections. Thus, a neural network 

is a computer system that works similarly to the biological neural network of the human brain. It manages large amounts of 

data and learns from input to produce results. Neural networks are widely used for prediction tasks because they analyze 

input parameters and identify the optimal relationship between input and output variables. By learning from data, neural 

networks can effectively map complex relationships that may not be easily captured by traditional techniques. Neural 

networks can be applied in various fields, including machine learning, image processing, computer science, optimization, 

forecasting, etc. An ANN typically consists of three layers: the input layer, which is the one that receives the data first; the 

hidden layer, which is responsible for processing data after it has been received; and the output layer, which gets data that 

has been processed by the hidden layer. An ANN consists of three main layers: the input layer (receiving raw data), the next 

part is the hidden layer (processing data), and the output layer (generating results). A neural network model was developed 

using MATLAB's nftools to forecast photovoltaic power generation [33]. Figure 3 shows the ANN model developed using 

the nftools application in the MATLAB program. 

 

 
Figure 3. 

The ANN model via nftools in MATLAB. 

 

3.2. Particle Swarm Optimization Algorithms 

The PSO is modeled after the cooperative behavior of bird flocks, where members cooperate to accomplish a shared 

objective, including locating food or avoiding predators. This approach was first developed in 1995 by Eberhart and Kennedy, 

who aimed to model the social behavior and cooperation seen in nature to solve optimization problems. It is an evolutionary 

computational technique that is easy to use and has simple parameters. In PSO algorithms, a solution is given to particles that 

can move in the search direction. Each particle has a best solution linked with it, called pbest; moreover, the PSO monitors 

the global best value, termed gbest. The PSO method updates the particle’s location and velocity continually until it reaches 

the objective function’s optimal value [33]. A random velocity and position are assigned for each swarm in the PSO algorithm, 

with each swarm having its fitness value at each iteration. A comparison and update will be performed between the global 

best (gbest) and the personal best group (pbest). The swarm velocity and position are updated at each iteration using Equations 

1 and 2, where these two vectors are required for the precise determination of each particle’s position [25, 34]. 

V(k+1) = wv(k) + c1r1(pbest(k) - X(k)) + c2r2(gbest(k) – X(k)) (1) 

X(k+1) = X(k) + v(k+1) (2) 

 

Where r1 and r2 are numbers that were randomly generated and have a value between 0 and 1, c1 and c2 are constant 

values of acceleration, and w is the particle’s inertia weight. 

 

3.3. Long Short-Term Memory Model 

This section provides a brief overview of the LSTM algorithm. The LSTM was selected due to its widespread popularity 

and strong efficiency in previous studies. Despite having the same goal, various deep learning algorithms have different 
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mathematical models, strengths, and disadvantages. The LSTM was designed to tackle the long-term dependency issue in 

traditional RNNs. The memory unit in an LSTM network takes the role of an RNN's hidden layer neurons. An input gate, a 

forget gate, and an output gate are the three main components that comprise the memory unit's construction. These gates 

enable the network to selectively delete erroneous data or store important information at each time step, effectively managing 

the flow of information and enhancing learning over long sequences. Capable of learning temporal relationships of recurrent 

networks, LSTM has emerged as one of the most suitable networks in various domains. This timing relationship is typical in 

photovoltaic power generation because it depends on solar intensity and environmental conditions and is difficult to 

understand and forecast [30, 35, 36]. Figure 4 shows the structure of an LSTM block diagram. The fundamental concept 

behind LSTM is its memory cell, which can retain information over extended periods. This memory cell consists of an internal 

state (referred to as the cell state vector) that can be updated by adding new information or forgetting outdated information. 

 

 
Figure 4. 

A block diagram structure of the LSTM. 

 

In LSTM networks, the three primary gates that regulate information flow are the Forget, Input, and Output gates. To 

avoid needless memory retention, the Forget Gate analyzes the previous cell state and decides which data should be deleted. 

The input gate controls the flow of fresh information into the cell memory to ensure that relevant information is stored for 

processing later. Lastly, the Output Gate controls which data from the cell memory is sent to the following layer, which 

affects the network's ultimate output. These gates collectively enable LSTM networks to efficiently manage long-term 

dependencies in sequential data processing. These gates work together to ensure that relevant information is retained while 

irrelevant data is removed, enhancing the network’s ability to learn from long sequences effectively. Both gates utilize a 

sigmoid activation function followed by pointwise multiplication to regulate the information flow. The Output Gate controls 

the information that will be output from the memory cell. Together, these gates ensure that the LSTM can effectively manage 

long-range dependencies, allowing it to learn and retain patterns over time. Equation 3 illustrates how the gates work by 

combining the output from the previous time step, the cell state vector, and the current input. 

ft = σ(Wf · [ht−1, xt] + bf ) (3) 

In this case, ft is the Forget Gate's activation vector, which decides which data from the prior cell state should be deleted; 

Wf is the weight matrix associated with the input; xt is the input vector in the present time step for the LSTM unit; bf is the 

bias term added to the input, and ht−1 is the preceding time step's hidden condition vector, which influences the current 

decision-making process of the gate. The Input Gate determines which fresh data from the current input should be included 

after the Forget Gate has filtered the prior cell state. This process is regulated by the sigmoid function, ensuring that only 

relevant data is incorporated into the cell state. By selectively updating its memory, the LSTM model enhances its ability to 

retain important information while discarding less significant data, improving sequential data processing. Thus, the activation 

vector for the input/update gate can be expressed by Equation 4. This cycle uses an input modulation gate to manage the new 

value. The input modulation gate equation is similar to the input gate equation but utilizes a tanh function, shown in Equation 

5. 

it = σ(Wi · [ht−1, xt] + bi) (4) 

C˜t = tanh(WC · [ht−1, xt] + bC ) (5) 

The cell state vector Ct updates the memory by combining two components: the old memory, which passes through the 

forget gate, and the new memory, which passes through the input gate, expressed by Equation 6. 

 

Ct = ft × Ct−1 + it × C˜t (6) 

 

The output gate decides which information to retrieve from the memory, depending on specific conditions. The activation 

vector ot of the output gate can be specified as described in Equation 7. The LSTM unit ht output vector derived from Ct is 

subsequently processed by the tanh function, as shown in Equation 8. 
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ot = σ(Wo · [ht−1, xt] + bo) (7) 

ht = ot × tanh(Ct) (8) 

 

3.4. Gate Recurrent Unit Model 

The GRU is a gating mechanism for RNNs introduced in 2014. Like LSTM networks, GRUs also incorporate gating 

mechanisms, but with a simpler architecture. The Update Gate and the Reset Gate are the only two gates in GRU, as opposed 

to the Forget Gate and Output Gate found in LSTM. This design reduces the number of parameters, making GRU more 

computationally efficient. This absence of an output gate can give GRU an edge in certain tasks, especially when working 

with smaller or less frequent datasets, where overfitting may be a concern. GRU can be seen as an improvement on the hidden 

layer of traditional RNNs, as it enables better handling of long-term dependencies by adaptively updating and resetting hidden 

states. Its schematic and structural layout is depicted in Figure 5. showing how these gates function together to update the 

network’s memory and control information flow [30, 37]. 

 

 
Figure 5. 

The ANN model via nftools in MATLAB. 

 

The pertinent symbols are as follows: 

• At time step t, the input to the network is represented by the variable x(t). 

• The data vectors h(t) and x correspond to the temporal output and the immediate hidden layer output at time t, 

respectively.  

• The gate vectors z(t) and r(t) are defined such that z(t) is the update gate, r(t) is the reset gate output at time step t. 

• The network utilizes two activation functions: the sigmoid function, denoted as σ(x), and the tanh function, denoted as 

tanh(x). 

The GRU model operates similarly to the LSTM model, beginning with the GRU receiving the current input and the 

previous hidden state. These two components are processed through the reset gate, which determines how much of the 

previous memory should be forgotten before updating the current state. This mechanism enables the model to effectively 

control the flow of information while retaining relevant context in sequential data. Overall, GRU offers a simpler structure 

compared to LSTM while still maintaining the ability to manage information flow and context efficiently [35, 38]. The reset 

gate vector is mathematically defined in Equation 9. Moreover, the update gate controls which values are to be stored or 

added, as described in Equation 10. 

zt = σ(Wz · [ht−1, xt] + bz) (9) 

rt = σ(Wr · [ht−1, xt] + br) (10) 

Once the reset gate has been passed through, the candidate activation vector ht is calculated as illustrated in Equation 11. 

In the GRU model, the candidate activation primarily influences updates to the hidden state. Based on the previous hidden 

state and the current input, it represents the potential change to the hidden state. This mechanism allows the GRU to efficiently 

capture relevant information and discard unnecessary details, thereby improving its ability to model sequential data. As a 

result, the GRU model's final output is derived from Equation 12, which combines the candidate activation with the update 

gate to produce the updated hidden state. 

 

h˜t = tanh(Wh · [rt · ht−1, xt] + bc) (11) 

ht = (1 − zt) ∗ ht−1 + zt ∗ h˜t (12) 

 

4. Research Methodology 
4.1. PV Power Generation System a Case Study 

Forecasting the PV output power requires the model’s input data for training. For this research, the five-input data was 

selected: date, hour, solar intensity, solar panel temperature, ambient temperature, and PV power for one year. This data is 

obtained from the solar power plant in the central region of Thailand, collecting data in 2023. The annual solar intensity data 
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for the case study area is presented in Figure 6. Additionally, Figure 7 shows the monthly solar intensity data for January 

2023, providing a more detailed view of solar radiation patterns during that specific month. 

 

 
Figure 6. 

The annual PV irradiation of the case study location. 

 

 
Figure 7. 

Monthly solar radiation in January. 

 

The annual solar panel temperature data was used for a case study, as shown in Figure 8. The highest temperature is 57 

degrees Celsius in February. Figure 9 shows the case study area’s annual photovoltaic power generation system output. 
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Figure 8. 

The annual solar panel temperature of the case study area. 

 

 
Figure 9. 

The annual PV power generation system output power of the case study area. 

 

4.2. The PV Power Forecasting with PSO-ANN Technique 

The PSO-ANN hybrid prediction model combines the PSO method with an ANN to create an enhanced predictive 

system. In this approach, PSO optimizes the weights and parameters of the ANN to improve its learning capabilities and 

accuracy. The ANN is designed to mimic the structure and function of the human nervous system, utilizing repetitive learning 

to identify patterns and correlations based on previous data. By learning from repeated experiences, the ANN can improve 

its ability to predict outcomes. Figure 10 depicts the structure of the neural model, which is modeled after the human nervous 

system, acting as a training network that adjusts itself to better achieve target outcomes. 
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Figure 10. 

The functional structure of the neural network. 

 

This model makes use of a multilayer feed-forward neural network, more precisely a backpropagation network, which 

is renowned for its intricacy and extremely non-linear structure. In this type of network, each neuron is associated with a 

weight that is initially assigned randomly. The PSO enhances this process by optimizing the network’s parameters, which 

leads to more efficient learning and improved prediction accuracy. By effectively adjusting the weights through the PSO 

algorithm, the model can converge more quickly to an optimal solution, resulting in better performance in tasks such as 

classification and regression. These weights influence the strength of connections between neurons and are adjusted during 

the learning process. In order to determine the best output for every neuron, the network also makes use of a variety of 

activation or transfer functions, including Tan-sigmoid, Log-sigmoid, and Linear functions. Three main layers make up the 

neural network architecture: the input layer accepts data, the hidden layer processes it, and the output layer provides the final 

classification or prediction. The network’s backpropagation algorithm allows it to learn by minimizing error through the 

adjustment of weights, iterating over the dataset until the output aligns with the desired target [24, 39]. The first step in 

creating the hybrid power forecasting model with the PSO-ANN method was to identify how many particles would be used 

in the structure of the ANN algorithm. 
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Figure 11. 

Block diagram of the M-PSO-ANN power forecasting model. 

 

The process begins by sampling the particles, which involves specifying their weight, position, and velocity. Next, the 

neural network is simulated, and the suitability of the initial particles is assessed. Following this, the best global best (gbest) 

and personal best (pbest) values are identified, and the suitability of each particle within the neural network structure is 

calculated. The best fitness value in the group is determined during each iteration, leading to improvements in particle velocity 

and position. This procedure is continued until the maximum iterations is achieved after the ideal values for the current set 

of particles are gathered. Figure 11 shows the functional diagram of the MPSO-ANN power forecasting model. After the 

simulations were completed, the researchers noticed that much power was generated during the night. Therefore, a command 

model was created to adjust the power generated at night to zero. 

 

4.3. The PV Power Forecasting with DL Techniques 

This section outlines the detailed steps and configurations used to implement the DL technique. The technique is 

developed and executed using the Keras library within a Jupyter notebook, utilizing Python as the programming language. 

The training and testing processes are conducted on a machine powered by an Intel(R) CoreTM i7-8750H CPU that operates 

at 2.20 GHz. Performance is optimized and training time is decreased with this configuration, which guarantees effective 

management of the computational load throughout the deep learning model training phase. The hardware and software 

configurations, including GPU usage, memory allocation, and batch sizes, are carefully adjusted to balance speed and 

accuracy. The detailed setup parameters used for the training process are outlined in Table 2, providing a clear overview of 

the environment in which the models are trained. Since the outcomes of all models ranged from 9 to 12 epochs, the training 

method for all DL models used an epoch number of 10. The learning rate for each model was dynamically adjusted using the 

Adam optimizer, an adaptive learning rate optimization algorithm. By altering the learning rate according to the first and 

second moments of the gradients, this method improves convergence speed and overall performance. By employing the Adam 

optimizer, the models achieve more efficient training, allowing them to better capture complex patterns in the data. Figure 

12 shows the steps involved in implementing the proposed DL approach for PV power forecasting. The process begins with 

the initialization of the weight parameters for each generation. The PV system's input data is then read and processed. The 

deep learning models are then trained on the dataset, iterating until they converge to an optimal solution. Finally, the trained 

models are evaluated using a test dataset, and performance is measured through accuracy metrics to determine the 

effectiveness of each technique. 
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Figure 12. 

Flow chart of DL models application on PV power forecasting. 

 
Table 2. 

Parameters Setting for Deep Learning Techniques. 

Models Parameters Values 

GRU and LSTM Number of FC-layer  

Number of neural layers 

Activation function   

Dropout  

Optimizer  

Loss  

3 (50, 100, 100)  

2 (1, 256) 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 

0.1 

Adam 

MAE 

 

4.4. Accuracy Analysis 

Forecast accuracy is important since it shows how closely the actual values match the model’s forecasts. A model is 

considered highly accurate and reliable if its forecast results deviate minimally from the real outcomes. Several methods are 

employed to evaluate the accuracy of PV forecasting, which is crucial for optimizing the integration of solar energy into 

power systems. Accurate forecasting helps utilities manage supply and demand effectively, ensuring grid stability and 

reducing operational costs. Among the various metrics used to assess the accuracy of forecasting models, the Mean Absolute 

Error (MAE) and Mean Absolute Percentage Error (MAPE) are two of the most commonly employed. One of the popular 

metrics for evaluating the precision of forecasting models is the Root Mean Squared Error (RMSE), especially in domains 

like energy management, finance, and meteorology. An accurate measure of the model's performance is provided by RMSE, 

which computes the square root of the average squared discrepancies between the observed and predicted values. This metric 

is very useful since it can be used to measure the degree of prediction error, which gives information on the efficacy and 

dependability of the model [40, 41]. This article mentions the coefficient of determination (R2) as one of its metrics. This 

statistical metric shows how much of the variance in the dependent variable in a regression model can be explained by the 

independent variable. It gives insight into the model’s quality of fit. In this article, five performance indicators are introduced: 

MAE, MAPE, Percent Error, RMSE, and R2. The MAE is defined as the average of the absolute variances between anticipated 

and actual values, which provides a simple measure of accuracy. Both the MAE and MAPE can be calculated using Equations 

13 and 14, offering a way to evaluate the model’s predictive performance by comparing it against actual PV power output. 
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The Error and RMSE can be calculated from Equations 15 and 16. The R2 has a value ranging from 0 to 1. A value of R2 = 1 

indicates that the model explains all the variability in the dependent variable, signifying a perfect fit, while an R2 = 0 suggests 

that the model does not explain any variability, indicating a poor fit. So, the higher value of R2 means the more accurate the 

model [42]. The R2 can be calculated from Equation 17. 

 

     

(13) 

    

(14) 

 

(15) 

 

(16) 

   

(17) 

 

Where 𝑦𝑖 and �̂�𝑖 are the PV power forecasting and the real PV power output at time ith, 𝑦-
𝑖 is the mean of PV power 

output, respectively. The number of forecasting time series is denoted by n. 

 

5. Results and Discussion  
The PV power forecasting results of the PV system were forecasted using MATLAB with the input parameters, as shown 

in section IV, and to assess the prediction findings' accuracy, a number of metrics were employed. Forecasting using PSO-

ANN, LSTM, and GRU techniques uses 1,000 calculation cycles. The PV forecasting results using the PSO-ANN as shown 

in Figure 13; annual simulation results show large discrepancies, especially at night. Therefore, the researchers improved the 

forecasting results for nighttime forecasts to zero to make the model more accurate. Figures 14 and 15 show the annual 

simulation results using the LSTM and GRU techniques, respectively, both of which produce similar outcomes. When 

compared to the PSO-ANN simulation results, it is evident that the LSTM and GRU techniques have fewer errors, particularly 

during nighttime conditions, where the PSO-ANN technique exhibits higher error rates. 

 

 
Figure 13  

Annual PV power forecasting using the PSO-ANN technique. 

 

0 Jan. Feb. Mar. Apr May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Months

0

20

40

60

80

100

120

140

160

180

200

P
o
w

er
 (

k
W

)

Actual PV power

PV power forecasting with PSO-ANN

PV power forecasting with Modify PSO-ANN



 
 

               International Journal of Innovative Research and Scientific Studies, 8(2) 2025, pages: 4451-4469
 

4464 

 
Figure 14. 

Annual PV power forecasting using the LSTM technique. 

 

 
Figure 15. 

Annual PV power forecasting using the GRU technique. 

 

Figure 16 shows the PV power output comparison of three forecasting techniques without modification, which shows 

the seven-day forecast from December 25-31. The daily simulation results using PSO-ANN, LSTM, and GRU techniques 

are displayed in Figures 17 to 19, respectively. These results demonstrate that the system does not generate any power after 

the model is modified in the middle period from the graph, and that the prediction results from the LSTM and GRU techniques 

are the ones that are closest to the real PV power generation. However, the forecast results still show quite a discrepancy 

during the night. The output power prediction results of the solar power generating system employing the PSO-ANN, GRU, 

and LSTM methods are shown in Figures 20-22. The linear regression analysis reveals that the GRU and LSTM procedures 

are more accurate than the PSO-ANN techniques. The forecasting results converge towards the Linear line, which has 

regression values of 0.997 and 0.998, respectively. 
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Figure 16 

The PV power output comparison of three forecasting techniques without modification. 

 

 
Figure 17. 

Weekly PV power forecasting using the PSO-ANN technique. 

 

 
Figure 18. 

Weekly PV power forecasting using the LSTM technique. 
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Figure 19. 

Weekly PV power forecasting using the GRU technique. 

 

 
Figure 20. 

Linear regression of the PV power forecasting results using the PSO-ANN technique. 

 

 
Figure 21. 

Linear regression of the PV power forecasting results using the GRU technique. 
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Figure 22. 

Linear regression of the PV power forecasting results using the LSTM technique. 

 

 
Figure 23. 

The forecasting power error for each month. 

 
Table 3. 

Comparison of PV output power forecasting results. 

Techniques 
Without Modifying Techniques Modify Techniques 

MAE (kW) MAPE (%) RMSE (kW) MAE (kW) MAPE (%) RMSE (kW) 

PSO-ANN 378.45 13.18 532.15 287.04 9.99 519.69 

GRU 100.75 3.50 297.69 97.71 3.40 295.04 

LSTM 112.36 3.91 233.09 85.30 2.97 232.64 

 

To illustrate the precision of the suggested methods, Table 3 presents a comparison of PV power forecasting. When 

comparing the forecasting results using the MAE metric across three models, the GRU technique initially demonstrated the 

highest accuracy with an MAE of 112.36 kW. However, after modifications to the model, the LSTM technique outperformed 

the others, achieving an MAE of 85.30 kW, making it the most accurate model. Comparing the simulation results with the 

model’s MAPE indicators shows that the GRU technique has the highest accuracy, with a MAPE value of 3.50%. However, 

after model improvements, the LSTM technique becomes the most accurate, achieving an MAPE value of 2.97%. A 

comparison of the simulation results using the MAPE indicators confirms that the LSTM technique outperforms other 

methods, with an initial RMSE of 233.09 kW. Following the model improvements, the RMSE is further reduced to 232.64 

kW, reinforcing its accuracy in power prediction. The LSTM approach offers the lowest predicting error, according to the 

PV output power forecasting findings. This demonstrates that the LSTM approach outperforms the PSO ANN and GRU 

approaches in terms of accuracy. The fact that power is created while the system is not producing power is the weakness of 

the three deep learning approaches. Because it is a random value, if such a technique is to be used, the input values must be 

adjusted before entering the model, or the output values must be adjusted after the forecasting is made, for the results to be 

accurate and as expected. The simulation findings indicate that using the M-LSTM model to set nighttime power to zero 

enhances forecast results and lowers simulation result error levels. Figure 23 presents the error values for the monthly PV 
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forecasting. The results indicate that the LSTM technique consistently exhibits the lowest error values. Notably, the M-LSTM 

technique stands out among the other methods, demonstrating superior accuracy in power prediction. 

 

6. Conclusion 
PV power generation systems are increasingly being installed nowadays, making pre-installation planning crucial. This 

planning involves forecasting both the power produced and the potential profit of the PV system. Accurate forecasting 

requires comprehensive data from previous power generation systems for model training. Traditionally, PV power forecasting 

has faced challenges, particularly during nighttime operations when solar energy production is absent or significantly 

reduced. Predictions during these periods have often been inaccurate due to the randomness of nighttime conditions. Despite 

this, some electrical energy can still be generated, albeit minimally, which complicates prediction accuracy. This study 

focuses on improving PV power forecasting accuracy, particularly during nighttime, by employing advanced deep learning 

techniques. We compared the performance of different techniques and enhanced them to better account for PV power 

generation. This paper applies the approach involving training data sets that include 24-hour energy production records 

encompassing day and night cycles. By incorporating nighttime data into the training process, the aim is to mitigate the errors 

in power predictions during these periods. Specifically, the effectiveness of the M-LSTM technique is evaluated compared 

to other methods, such as PSO-ANN and GRU techniques. The simulation results demonstrate that the M-LSTM technique 

exhibits superior accuracy when compared against the other approaches. This work advances the accuracy of PV power 

forecasts by utilizing deep learning algorithms and optimizing them for nighttime settings. For PV power production systems 

to operate as efficiently and profitably as possible, planning and operation must be optimized, and this requires greater 

forecasting capabilities. 
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