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Abstract 

This research applied surface recognition in autonomous tractors is essential for efficient navigation across diverse terrains 

of asphalt, gravel, and soil by using machine learning models and processing data acquisition from the BNO055 IMU sensor. 

In addition, this aims to evaluate and optimize various machine learning models, including Logistic Regression, K-Nearest 

Neighbors (KNN), SVC, Decision Tree, Random Forest, Gradient Boosting, AdaBoost, and XGBoost, for surface 

classification, with a focus on reducing model size without sacrificing classification accuracy. The research applies model 

pruning techniques to optimize these models for TinyML environments. The results demonstrate that XGBoost and Random 

Forest achieve high classification accuracy but have large model sizes, which can be mitigated through pruning, significantly 

reducing their size while maintaining performance. This study provides valuable insights into the trade-offs between model 

size and accuracy, contributing to the development of more efficient models for embedded systems in autonomous tractors. 

The findings highlight the potential of model pruning in enabling real-time surface recognition in resource-constrained 

environments, offering a scalable solution for deployment in agricultural machinery. The best results demonstrate 91 percent 

accuracy for XGBoost; Random Forest, on the other hand, has a very large trimmed model size (19,603 KB) and more 

efficient operations than other machine learning models for surface classification. 
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1. Introduction 

Because it enables vehicles, such tractors, to navigate a range of terrains, including soil, gravel, and asphalt, surface 

identification is crucial to autonomous systems. Surface recognition technologies enable autonomous tractors to adjust their 

movement and control strategies in real-time based on the terrain they are traversing [1]. The ability to distinguish between 

different surfaces can improve overall performance, safety, and operational effectiveness, which is especially important for 

agricultural equipment [2]. However, there is a challenge with implementing these systems on embedded devices, including 

tractors with Internet of Things (IoT) capabilities [3]. These systems must manage the limitations of embedded devices, such 

as constrained memory and compute power, while handling real-time surface classification utilizing sensor data from 

accelerometers, gyroscopes, and magnetometers [4, 5]. Hence, achieving high classification accuracy while optimizing 

models for low-resource environments is a critical problem that needs to be addressed [6]. 

Many studies have been conducted on the use of machine learning (ML) for surface detection and terrain categorization 

in autonomous vehicles [1]. For this job, a variety of models have been employed, including Random Forest, XGBoost, and 

K-Nearest Neighbors (KNN) [7], all of which have demonstrated exceptional surface classification accuracy. For instance, 

Kabir et al. [8] employed Random Forest to accurately categorize topography in autonomous vehicles, but they neglected to 

focus on model size or optimization for deployment on low-resource devices. Similar to this, Cumbajin et al. [9] classified 

surfaces using CNN, focusing on accuracy and neglecting the issue of reducing the model size for embedded system 

deployment. These models are well known for their ability to forecast outcomes, but because of their size, they are not as 

well suited for real-time implementation in embedded systems, such as IoT-enabled tractors, where memory and processing 

capacity are frequently constrained [10]. 

However, several studies, such as Njor et al. [11], have focused on model pruning techniques to reduce the size of 

machine learning models like Random Forest and XGBoost for TinyML applications. The impact of pruning techniques on 

tractor surface classification performance is yet unknown, despite the fact that pruning has shown promise in reducing model 

size [12]. The gap in the research is the understanding of how to balance model size reduction with classification accuracy, 

particularly when deploying on embedded devices with stringent resource constraints. This gap is an excellent opportunity 

to carry out more research on the optimization of machine learning models for real-world applications in autonomous tractors. 

The primary objective of this work is to evaluate several machine learning models, such as Logistic Regression [13] K-

Nearest Neighbors (KNN) [14] SVC [15] Decision Tree [16] Random Forest [17] Gradient Boosting [18] AdaBoost [19] and 

XGBoost [20] for the task of surface recognition in autonomous tractors. The primary objective is to optimize these models 

for deployment in TinyML contexts of embedded systems. In order for the model to perform well on Internet of Things-

based tractor systems, this study specifically identifies the model that provides the optimal balance between low model size 

and high classification accuracy. 

To achieve that objective, this study examines and assesses a range of machine learning models, including more 

traditional models like Logistic Regression and more complex algorithms like XGBoost. The models will be trained using 

accelerometer, gyroscope, and magnetometer sensor data, and their performance will be evaluated using classification 

accuracy, precision, recall, and F1 scores [21]. Model pruning strategies will also be employed to reduce the size of the 

models in order to assess the effects on accuracy and model size [22]. The pruned models' and their unpruned counterparts' 

performances will be contrasted. 

According to early findings from training and assessing the models, XGBoost and Random Forest exhibit the highest 

classification accuracy, attaining high precision and recall levels. These models do, however, also have larger model sizes, 

which makes implementation on embedded devices more difficult. The model size is greatly reduced after using pruning 

strategies, especially for XGBoost, without a discernible decline in classification performance. This illustrates how pruning 

strategies can be used to optimize models for TinyML applications. 

The findings show that although Random Forest and XGBoost provide the best classification accuracy, their large model 

sizes are a drawback for the deployment of embedded systems.  These models' size was successfully decreased while retaining 

excellent accuracy through the use of pruning procedures, which qualified them for use on IoT-enabled tractors. This study 

emphasizes how crucial it is to optimize machine learning models for real-time, resource-constrained contexts by taking into 

account both accuracy and model size. To further increase the effectiveness of these models without sacrificing their 

performance, future research could investigate more sophisticated pruning techniques and model quantization.   

 

2. Materials and Methods  
The materials and methods of research will follow overview process as Figure 1.    
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Figure 1.  

Research Overview. 

 

2.1. Data Acquisition Cleaning, and Preprocessing 

The dataset used in this study includes data from a BNO055 IMU sensor at a tractor robot model in Figure 2, the overall 

parameter capturing accelerometer, gyroscope, and magnetometer readings under different totals surface 7 events as Table 

1.  

 
Table 1. 

Performance Evaluation Results. 

Output data Collections Type of event Type for track and surface 

1 Event 1 Around on asphalt surface 

2 Event 2 Around on gravel surface 

3 Event 3 Zigzag on gravel surface 

4 Event 4 Around on concrete and gravel surface 

5 Event 5 Zigzag on concrete and gravel surface 

6 Event 6 Around on Soil + Grass surface 

7 Event 7 Zigzag on Soil + Grass surface 

 

The dataset consists of the following features: 

• eu-X, eu-Y, eu-Z: Euler angles 

• acc-X, acc-Y, acc-Z: Accelerometer data 

• gyro-X, gyro-Y, gyro-Z: Gyroscope data 

• mag-X, mag-Y, mag-Z: Magnetometer data 

• output: Class labels representing different surface types 
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Figure 2. 
Tractor Robot Model. 

 

 
Figure 3. 
Data Visualization. 

 

Figure 3, shown histograms and kernel density estimations (KDE) for several features in the dataset, particularly the 

IMU sensor readings, are shown in Figure 3. The sensor's orientation in three dimensions is represented by the Euler angle 

characteristics (eu-X, eu-Y, and eu-Z). The eu-X and eu-Z distributions seem to be very uniform, indicating that the sensor 

data is dispersed among several orientations. The skewed distribution of eu-Y, on the other hand, suggests that the sensor 

data are concentrated in particular orientations. This could reveal details on how the tractor moved or the setting where the 

data was gathered. 

With peaks close to zero and a broad spread on the positive side, the accelerometer data (acc-X, acc-Y, and acc-Z) exhibit 

skewed distributions, especially for acc-X and acc-Y. This implies that specific acceleration ranges are where the tractor's 

motion, or even outside forces operating on it, are focused. A significant percentage of the acc-X, acc-Y, and acc-Z data 

points fall near zero, which may signify times during data collection when there is relative stability, such as when the tractor 

is not moving or the IMU sensor is comparatively stationary. 

Angular velocity is measured using the gyroscope data (gyro-X, gyro-Y, and gyro-Z). There was little rotation during 

the data collection period, as indicated by the large concentrations at zero in the distributions for these features. Sharp spikes, 

especially for gyro-Z, are present in some of the distributions, though, and may be a sign of sensor irregularities or abrupt 

rotational motions. To lessen the impact of these spikes on subsequent machine learning models, further research or 

preprocessing (such as outlier detection) may be necessary. 
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There is a lot of variability throughout the range and some concentration close to zero in the magnetometer source. This 

can be a sign of noise in the sensor data or of other elements, such as metal items or electrical interference that alter the 

magnetic field values. Prior to training machine learning models, further preprocessing (such as filtering) may be necessary 

to eliminate noise from the data, much like with the other sensor readings. 

 

 
Figure 4. 

Boxplot Data Visualization. 

 

Each feature in the dataset is represented by a boxplot in Figure 4, which is grouped by the output variable and 

corresponds to various surface types (0–6). The values for a particular characteristic are distributed among the several surface 

types in each boxplot. Data distribution can be visually summarized with boxplots, which show the median, range, and 

outliers. 

The orientation of the sensor in three dimensions is represented by the Euler angle characteristics (eu-X, eu-Y, and eu-

Z). There are outliers in both the eu-X and eu-Z boxplots, which demonstrate notable diversity among the various surface 

types.  These discrepancies imply that the orientation of the sensor varies more significantly on some surfaces than others.  

In the Y-axis orientation, eu-Y has a more concentrated distribution, suggesting more reliable sensor readings. This could be 

a reflection of the surfaces' characteristics, as some lead to more dynamic shifts in the orientation of the sensor. 

There is greater fluctuation in some surface types, particularly in acc-X and acc-Y, according to the accelerometer data. 

For surface type 0, for instance, acc-Z has a rather tight distribution, indicating that the Z-axis acceleration varies less on this 

surface. The acc-X and acc-Y axes, on the other hand, exhibit broader dispersion across various surfaces, suggesting that the 

tractor's movement dynamics vary more depending on the kind of surface. 

High variability is seen in the gyroscope features (gyro-X, gyro-Y, and gyro-Z), especially in gyro-Z. Outliers for surface 

types 1 and 5 are visible in the gyro-Z boxplot, suggesting significant rotational movements or abrupt direction changes. This 

indicates that the tractor rotates more on these surfaces as a result of the nature or roughness of the surface. Conversely, gyro-

X and gyro-Y exhibit more concentrated distributions, indicating less noticeable rotational movements along the X and Y 

axes. 

There is significant variability and outliers for surface types 1 and 5 in the magnetometer data (mag-X, mag-Y, and mag-

Z), especially for mag-X and mag-Y. The presence of different terrain characteristics that affect the magnetometer readings 

could be the cause of the tractor experiencing fluctuating magnetic field conditions. The variation between surfaces suggests 

that the magnetometer may be susceptible to variations in the surrounding environment, such as the makeup of the terrain or 

adjacent objects. 

The sensor readings' variations across various surfaces are displayed in the box plots. Certain characteristics, including 

gyro-Z and acc-Y, exhibit more noticeable fluctuation between surface types, suggesting that they might be more effective 

at differentiating between surfaces. Features like acc-Z and gyro-X, on the other hand, seem to be more consistent across 

surfaces, which may indicate that they are less useful for classification. Outliers, especially in the gyroscope and 

magnetometer data, suggest that there may be intermittent sensor events or sensor noise, which may need to be fixed during 

preprocessing in order to increase model accuracy. 
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The selection of the most useful features for machine learning tasks will be aided by these insights about the distribution 

of features across surface types. To increase the classification model's efficacy, the following actions might include 

addressing outliers, normalizing these features, and utilizing feature selection strategies. The fact that different surfaces have 

different sensor readings also raises the possibility that some surfaces have unique sensor characteristics, which might be 

exploited to improve surface recognition. 

The associations between each pair of attributes in the dataset are displayed in Figure 5, which is a matrix of scatter plots 

and histograms. The distribution of every single feature along the diagonal is also included. Understanding the feature 

distribution and seeing any relationships between them, as well as recognizing the patterns for each output class, which 

corresponds to various surface types in your dataset are two areas where this kind of visualization is quite helpful. 

All of the features are all included in the pair plot. While the histograms along the diagonal display the individual 

distributions of each characteristic, the scatter plots shed light on the pairwise correlations between each pair of features. We 

can see from the visualizations how the features relate to one another in the various output classes, which correspond to 

various surface kinds. 

The pairwise scatter plots show a number of intriguing connections. For example, some feature pairs, such as acc-X and 

acc-Y, exhibit discernible clusters or patterns, suggesting a possible linear relationship between the two features. Some scatter 

plots, on the other hand, lack a discernible pattern, indicating little to no association between those feature pairs. This can aid 

in feature selection because highly correlated feature pairs may be redundant and can be removed to simplify the model. 

Additionally, it is simple to compare how features behave on various surface types due to the plot's usage of different 

colors to denote the output class. Certain features, such as gyro-X and acc-Z, exhibit distinct variations in distribution for 

various surface types, which may indicate that they are more representative of particular surfaces. However, characteristics 

like mag-Y and mag-Z exhibit greater overlap between surface types, suggesting that they might not be as useful in 

differentiating between various surfaces. 
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Figure 5. 

Scatter Plot Data Visualizations. 
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Figure 6. 

Correlation Matrix. 

 

A correlation matrix, shown in Figure 6. Features like acc-Z and gyro-Z, for instance, show a somewhat positive 

correlation of 0.41, indicating that variations in angular velocity along the Z-axis are somewhat correlated with variations in 

acceleration along the Z-axis. A similar pattern in the rotational movements along the X and Y axes may be implied by the 

moderately positive correlation of 0.39 between gyro-X and gyro-Y. However, characteristics like acc-Z and acc-Y show a 

high negative correlation of -0.61, indicating that acceleration along the Y-axis tends to decrease as acceleration along the Z-

axis increases. This could be because of opposing forces or differential movements. 

Additionally, other feature pairs, like gyro-X and mag-X and gyro-Y and mag-Y, have weak or no correlations with one 

another, indicating that they may represent independent information and may not significantly affect one another. Apart from 

acc-Z and mag-Z, the output feature, which most likely represents various surface types, exhibits modest correlations with 

most sensor features.   

As a result of these realizations, highly connected traits must be eliminated. Multicollinearity may result from features 

like acc-Z and acc-Y, which have a large negative correlation, or other pairings with high correlation values, such as gyro-X 

and gyro-Y. When characteristics are highly correlated, multicollinearity occurs, which can make regression models unstable 

and less interpretable. The model's efficiency is increased, and redundancy is decreased by eliminating strongly correlated 

features, which simplifies the model, reducing the likelihood of overfitting and enhancing its capacity for generalization. 

Feature selection by Recursive Feature Elimination (RFE) is essential. Recursively eliminating the least significant 

features depending on model performance is how RFE chooses the most crucial ones. By keeping only the most pertinent 

features for prediction, this procedure helps to reduce the dimensionality of the dataset, which can increase the accuracy of 

the model and lessen overfitting. By using RFE, we ensure the model only considers the most important features, increasing 

its predictive ability and computational efficiency. 

 

2.2. Feature Engineering 

To lessen multicollinearity, highly correlated features (threshold > 0.8) were eliminated using feature engineering. 

Additionally, the top five most significant features were chosen using a logistic regression model and Recursive Feature 

Elimination (RFE). By reducing the dataset's dimensionality, this step enhanced the generalization and training efficiency of 

the model. Data cleaning and preprocessing, with special emphasis on feature engineering, are the main goals of the 

methodology depicted in the graphic. Recursive Feature Elimination (RFE) using a logistic regression model to choose the 

top 5 features and eliminating highly correlated features (threshold = 0.8) are the two primary procedures outlined in this 

methodology. 
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2.2.1. Remove Highly Correlated Features (Threshold = 0.8) 

Features (or variables) in any dataset may occasionally have a strong correlation with one another.  This indicates that 

modifications to one feature are mirrored in modifications to another. Multicollinearity problems in machine learning models 

can be brought on by high correlations, particularly those that are above a particular threshold (in this example, 0.8) [23].  

High levels of correlation across independent variables can lead to multicollinearity, which makes it challenging to identify 

the precise impact of each characteristic on the target variable.  As a result, the model may overfit to the data and produce 

unstable model coefficients, which would reduce its generalizability [22]. 

Our goal is to eliminate duplication by eliminating features with a high correlation (above 0.8). Removing one of the 

highly associated features reduces the feature space without significantly reducing the amount of information provided. As a 

result, models become more stable and interpretable by lowering the likelihood of overfitting and multicollinearity. The linear 

link between two properties is commonly measured using the Pearson correlation coefficient. If the absolute value of 𝑟𝑥𝑦  

exceeds 0.8, it suggests that features X and Y are highly correlated and one of them may be removed. It is computed as 

Equation 1, where 𝑟𝑥𝑦 is the correlation matrix coefficient between features X and Y. 𝑋𝑖 and 𝑌𝑖 are individual sample values 

for features X and Y. �̅� and �̅� are the means of X and Y. 

𝑟𝑥𝑦 =
∑(𝑋𝑖 − �̅�)(𝑌𝑖 − �̿�)

√∑(𝑋𝑖 − �̅�)2 ∑(𝑌𝑖 − �̅�)2
 (1) 

2.2.2. Recursive Feature Elimination (RFE) with Logistic Regression to Select the Top 5 Features 

A feature selection method called Recursive Feature Elimination (RFE) constructs a model to assess performance at each 

stage while recursively eliminating the dataset's least significant features. Finding and keeping the most important properties 

for the predictive model is the aim.  In RFE, a model is fitted, and features are ranked according to their significance [24]. 

Until the required number of features is kept, the least significant characteristics are eliminated, and the procedure is repeated. 

A linear model for binary classification, logistic regression can also be employed for multi-class classification. Each feature 

is given a weight, and the feature's significance is indicated by the weight's magnitude. Features with lower weights are seen 

as less significant.  First, match the dataset to the logistic regression model. Sort features according to their absolute 

importance, or coefficients. Refit the model using the remaining characteristics after removing the least significant one. 

Continue steps two and three until the top five features are chosen. The feature selection logistic regression model can be 

expressed as Equation 2, where 𝑝(𝑦 = 1|𝑋) is the probability of the target variable being 1 given the input features X. 𝛽0 is 

the intercept, 𝛽1are the coefficients for each feature 𝑋𝑖, indicating the importance of the respective features e is the base of 

the natural logarithm. 

𝑝(𝑦 = 1|𝑋) =
1

1 + 𝑒−(𝛽0+∑ 𝛽𝑖𝑋𝑖
𝑛
𝑖=1 )

 (2) 

By analyzing the absolute values of the features' coefficients (𝛽𝑖), the Recursive Feature Elimination (RFE) method 

iteratively eliminates the least significant features according to the values of their associated coefficients. The most significant 

features are those with the highest absolute coefficients, and these are kept in the model. First, the RFE algorithm ranks every 

feature in a logistic regression model according to the size of its coefficients. The significance of the remaining features is 

then recalculated when the least significant feature is eliminated. Until the desired number of characteristics is obtained in 

this case, choosing the top five features, this process is repeated. The features that make the biggest contribution to the 

predictive power of the model are the last set to be chosen. 

Recursive feature elimination (RFE) and the removal of highly correlated features are essential feature engineering 

procedures that guarantee a more reliable and effective model. The model may overfit to the data and become harder to 

understand when features are highly linked.  By eliminating these superfluous characteristics, we lower the dataset's 

dimensionality without sacrificing important information, which improves generalization and speeds up training. 

By determining which elements are most crucial for prediction and removing the least relevant ones, RFE, on the other 

hand, improves the feature selection procedure. This guarantees that the model only employs the most useful variables, 

increasing accuracy and decreasing overfitting. It is particularly crucial when working with a high number of features.  When 

both approaches are combined, the dataset becomes cleaner and more effective, which improves machine learning model 

performance. 

To sum up, the two feature engineering methods, removing highly correlated features and using RFE, are crucial for 

producing an ideal model that is both precise and understandable, especially when it comes to machine learning applications 

for tractor system is surface recognition. 

 

2.3. Model Selection and Evaluation 

This segment assessed many machine learning models for surface classification in order to identify the most effective 

model for identifying distinct surface types from the sensor data.    K-Nearest Neighbors (KNN), Support Vector Classifier 

(SVC), Decision Tree, Random Forest, Gradient Boosting, AdaBoost, XGBoost, and Logistic Regression are among the 

models taken into consideration in this study. The theoretical justifications and formulas for each of these models are provided 

below. 

 

2.3.1. Logistic Regression 

A probability value between 0 and 1 is the output of the linear model known as logistic regression, which is used for 

binary classification. It calculates the correlation between the probability of the binary outcome (class 0 or class 1) and the 
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independent features. The model maps any input to a probability by assuming a logistic (sigmoid) function.  By employing 

optimization techniques like gradient descent to minimize the logistic loss function, the coefficients βi are discovered [25]. 

 

2.3.2. K-Nearest Neighbors (KNN) 

K-Nearest Neighbors (KNN) is a classification technique that is non-parametric. Based on the majority class of its k-

nearest neighbors, it determines a data point's class. The "closeness" of the data points in the feature space is determined 

using the distance metric, which is often Euclidean.  The projected class for a specific test point 𝑥𝑡𝑒𝑠𝑡  is ascertained as 

Equation 3, where 𝑦𝑖 , 𝑦𝑖2
, … , 𝑦𝑖𝑘

 are the labels of the k nearest neighbors of 𝑥𝑡𝑒𝑠𝑡 . The distance between the test point 𝑥𝑡𝑒𝑠𝑡  

and each training point 𝑥𝑖 is typically computed using Euclidean distance Equation 4, where 𝑥𝑡𝑒𝑠𝑡 , 𝑥𝑖 and 𝑥𝑖,𝑗 are the feature 

values of the test point and the ith neighbor, respectively [26]. 

�̂� = 𝑚𝑜𝑑𝑒(𝑦𝑖 , 𝑦𝑖2
, … , 𝑦𝑖𝑘

) (3) 

𝑑(𝑥𝑡𝑒𝑠𝑡 , 𝑥𝑖) = √∑(𝑥𝑡𝑒𝑠𝑡 , 𝑗 − 𝑥𝑖,𝑗)
2

𝑛

𝑗=1

  (4) 

 

2.3.3. Support Vector Classifier (SVC) 

A supervised learning approach called the Support Vector Classifier (SVC) locates a hyperplane in a high-dimensional 

space that maximum divides the classes. The objective is to minimize the classification error and maximize the margin 

between the classes. Both linear and non-linear kernels (such as the radial basis function kernel) can be utilized with SVC.  

The SVC model seeks to identify a hyperplane for a linearly separable case (Equation 5), where w is the weight vector that 

is orthogonal to the hyperplane. X is the feature vector; b is the bias term, and 
1

‖𝑤‖
 as the margin. The goal is to maximize the 

margin while ensuring that each data point is classified correctly. The decision rule for classification is given by Equation 6, 

where the kernel trick is often used to transform the data into a higher-dimensional space to handle non-linear separations, 

defined by 𝐾(𝑥𝑖 , 𝑥𝑗) [27]. 

𝑤𝑇𝑥 + 𝑏 = 0                     (5) 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏)               (6) 

2.3.4. Decision Tree 

A non-linear classifier called a decision tree divides the data into subsets according to the feature values. Each split is 

created by selecting the trait that best separates classes or yields the most information gain. The choice to divide at each node 

in the tree is determined by either maximizing information gain or reducing the Gini impurity. For a given S, the Gini impurity 

is defined as Equation 7, were 𝑝𝑖  is the proportion of elements of class I in the set S. The information gain is calculated as 

the difference between the entropy of the parent node and the weighted sum of the entropy of the child nodes [28]. 

𝐺𝑖𝑛𝑖(𝑆) = 1 − ∑ 𝑝𝑖
2

𝐶

𝑖=1

  (7) 

2.3.5. Random Forest 

To increase classification accuracy, Random Forest, an ensemble learning technique, mixes several decision trees. A 

random subset of the data is used to train each tree, and the outputs of all the trees are combined to create predictions. The 

Random Forest model aggregates each tree Ti individual predictions to produce a prediction as shown in Equation 8, where 

𝑇𝑖(𝑥) is the prediction made by the ith decision tree, and M is the total number of trees in the forest [29]. 

�̂� = 𝑚𝑜𝑑𝑒(𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑀(𝑥)) (8) 

2.3.6. Gradient Boosting 

Gradient Boosting is an ensemble method that creates trees one after the other, fixing the mistakes of the preceding 

tree. Each new tree matches the residuals (errors) of the preceding trees, and the model minimizes a loss function using a 

gradient descent process. A new tree hm(x) that optimizes the loss function is added to the model at each step m Equation 9 

where 𝐹𝑚(𝑥) is the model at the mth step, ℎ𝑚(𝑥) is the new tree added at step m, and 𝜂 is the learning rate. The loss function 

𝐿(𝑦, 𝐹𝑚(𝑥)) is typically the mean squared error for regression or log-loss for classification [30]. 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) +  𝜂ℎ𝑚(𝑥) (9) 

2.3.7. AdaBoost 

Another ensemble method called AdaBoost (Adaptive Boosting) builds a stronger model by combining weak learners, 

usually decision trees. By changing the weights of data that are mistakenly identified after each iteration, it concentrates more 

on data points that are challenging to classify. Following each iteration, the AdaBoost algorithm modifies the weight of every 

data point. A weighted aggregate of all weak learner guesses makes up the final prediction (Equation 10), where ℎ𝑚(𝑥) is 

the weak learner at step m, and 𝛼𝑚 is the weight assigned to ℎ𝑚(𝑥), based on its performance [31]. 

𝐹(𝑥) = ∑ 𝛼𝑚ℎ𝑚(𝑥)

𝑀

𝑚=1

 (10) 

2.3.8. XGBoost 

An enhanced version of gradient boosting is called XGBoost (Extreme Gradient Boosting). It is intended to be both 

scalable and extremely efficient. Because XGBoost uses regularization (𝐿1 and 𝐿2) to avoid overfitting, it works especially 

well with big datasets.  The following objective function is optimized by XGBoost Equation 11, where l is the loss function, 
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�̂�𝑖 is the prediction for sample i, and 𝛺(𝑓𝑘) is the regularization term to penalize overly complex trees. To improve model 

generalization, XGBoost uses regularization in conjunction with gradient boosting.  Considering the trade-offs between 

accuracy, model complexity, and computational economy, these machine learning models were chosen for evaluation in order 

to determine which model performs the best for surface categorization [32]. 

                                                    𝐿(𝜃) = ∑ 𝑙(𝑦𝑖 , �̂�𝑖)
𝑁
𝑖=1 + ∑ 𝛺(𝑓𝑘)𝐾

𝑘=1                                          (11) 

2.4. Model Pruning and TinyML Conversion 

Model size was a crucial factor for deployment on embedded systems, particularly in resource-constrained contexts 

like Internet of Things (IoT) devices and other edge devices, in addition to assessing each machine learning model's 

performance. Because of their frequently constrained memory and processing capabilities, these systems require model 

optimization to function well without sacrificing accuracy. In order to solve this, we used model pruning techniques to make 

the models smaller without sacrificing speed, which allowed them to be deployed embedded in TinyML apps. 

 

2.4.1 Model Pruning 

Model pruning is a method for shrinking a machine learning model's size and complexity, usually by removing 

components that don't significantly improve the model's performance.        In order to make the model more appropriate for 

embedded deployment, where computational resources are scarce, it is intended to be made simpler while preserving or 

increasing its accuracy [33, 34]. 

Pruning is applicable to different parts of a machine learning model. Pruning might entail lowering the number of trees 

in the ensemble or restricting the depth of individual trees for decision tree-based models such as Random Forest and 

XGBoost. Pruning neural networks entails eliminating individual neurons or less significant weights. This results in a smaller 

model size by lowering the number of parameters in the model. 

Pruning decision tree models usually entails limiting the maximum tree depth, the least number of samples needed to 

divide a node, and the minimal impurity. Reducing the entropy or Gini impurity at each node is frequently the basis for the 

pruning choice. A node's Gini impurity can be found using Equation 12, where 𝑝𝑖  is the proportion of the data points of class 

i in the node t, and C is the number of classes in the target variable. 

𝐺𝑖𝑛𝑖(𝑡) = 1 − ∑ 𝑝𝑖
2

𝐶

𝑖=1

  (12) 

When pruning, we try to cut off branches that don't substantially increase the Gini impurity or information gain. For 

instance, the branch may be cut to lessen the complexity of the tree if a split does not result in a significant decrease in 

impurity. In neural networks, pruning entails eliminating weights according to their significance. A common trimming 

approach determines the weight's importance based on its magnitude. Weights that are near zero can be trimmed because 

they are deemed less significant. 

 

2.4.2. TinyML Conversion 

The use of machine learning models on tiny, resource-constrained devices, like microcontrollers and Internet of Things 

gadgets, is known as “tinyML”. Traditional machine learning models must be compressed to operate well in these settings 

because these devices usually have limited processing power, memory, and storage. Two methods of model optimization are 

used in TinyML.  use methods like knowledge distillation, quantization, and pruning to reduce the size of the model. By 

using specific hardware accelerators (such as TensorFlow Lite for Microcontrollers), the model can run effectively on 

embedded devices with constrained resources [35]. 

It is possible to lower the size of the models employed in this study (Random Forest and XGBoost with the best accuracy) 

by pruning them before deployment. TinyML devices frequently have extremely little memory, therefore the size reduction 

is especially crucial. For instance, the quantity of trees and depth of each tree may cause an XGBoost model to be quite 

enormous.  Pruning the trees lowers the total amount of memory needed to hold the model as well as the number of nodes. 

Following pruning, models are usually transformed into an embedded system-optimized format, like TensorFlow Lite for 

deep learning models or specialized formats for decision trees, like the binary format used by XGBoost. 

One method that lessens the accuracy of the model's weights and activations is quantization.  Quantization drastically 

reduces the model's memory footprint by converting weights from 32-bit floating-point numbers to 8-bit integers, which is 

what a normal model might employ. After that, the quantized model is optimized for embedded hardware execution. The 

following scaling factor is used in quantization to transform the weights from floating-point to integer values (Equation 13), 

where w is the original floating- point weight. s is the scaling factor determined by the range of the weights. The round 

function ensures that the weight is converted to the nearest integer [36]. 

𝑤𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 = 𝑟𝑜𝑢𝑛𝑑 (
𝑤

𝑠
)      (13) 

On embedded devices, this decrease in accuracy enables models to operate more quickly and use less memory. The 

model is transformed into a format that can be operated effectively on TinyML devices when pruning and quantization are 

completed. The conversion process entails converting the model into an optimal format and making sure it works with the 

desired hardware. 

 

2.4.3. Benefits of Pruning and TinyML Conversion 

When implementing machine learning models on embedded systems, the combination of TinyML conversion and model 

pruning offers several advantages. The model's size is further reduced by quantization and pruning, which both help the 
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model fit into the limited memory of TinyML devices. Faster inference speeds from smaller models are essential for real-

time applications in settings with limited resources. Smaller models use less processing power, which is crucial for battery-

powered gadgets. By eliminating components of the model that are unlikely to significantly contribute to the prediction, 

pruning can also aid in lowering overfitting. In conclusion, model pruning makes machine learning models more suited for 

deployment on devices with limited resources by reducing their size and complexity. These models are then optimized for 

effective embedded system execution using TinyML conversion. Without compromising speed, these methods are crucial for 

enabling real-time machine learning applications in embedded systems and the Internet of Things, such as surface 

identification in driverless cars [37]. 

 

3. Results and Discussion  
With an emphasis on performance measures and model size, this section displays the findings of the machine learning 

models assessed for surface categorization in the context of tractor surface identification. We also discuss the ramifications 

of these findings and how they apply to the real-world use of these models in embedded systems. 

 

3.1. Performance Evaluation 

Accuracy, macro precision, macro recall, macro F1 score, weighted precision, weighted recall, and weighted F1 score 

were among the performance indicators used to assess the models. These metrics offer a thorough assessment of the model's 

accuracy in classifying surface types while taking dataset imbalances and classification errors into account. 

 
Table 2. 

Performance Evaluation Results. 

Model Accuracy 
Macro 

Precision 

Macro 

Recall 

Macro 

F1 

Weighted 

Precision 

Weighted 

Recall 

Weighted 

F1 

Logistic Regression 0.51 0.42 0.44 0.42 0.49 0.51 0.50 

K Neighbors 0.86 0.84 0.84 0.84 0.86 0.86 0.86 

SVC 0.73 0.69 0.69 0.69 0.75 0.73 0.73 

Decision Tree 0.86 0.85 0.85 0.85 0.86 0.86 0.86 

Random Forest 0.90 0.90 0.89 0.89 0.91 0.90 0.90 

Gradient Boosting 0.86 0.85 0.84 0.84 0.86 0.86 0.86 

AdaBoost 0.53 0.45 0.46 0.44 0.53 0.53 0.52 

XGB Classifier 0.91 0.90 0.90 0.90 0.92 0.91 0.91 

 

As shown in Table 2, the percentage of accurate forecasts among all predictions is known as accuracy.  The models with 

the highest accuracy in our investigation were Random Forest and XGBoost, with 90% and 91%, respectively. This suggests 

that both models performed exceptionally well at differentiating across various surface types. With accuracies of about 86%, 

K-Nearest Neighbors (KNN) and Gradient Boosting also shown strong performance.  However, models such as AdaBoost 

and Logistic Regression demonstrated comparatively lower accuracy ratings of 51% and 53%, respectively, indicating that 

they were less able to capture the intricacies in the data. 

Particularly with unbalanced datasets, precision, recall, and F1 score provide a more detailed picture of model 

performance. The models that performed the best in these metrics were Random Forest and XGBoost, which showed balanced 

precision and recall for all surface types. With a macro F1 score of 0.90, XGBoost demonstrated a healthy trade-off between 

recall and precision.  Further demonstrating its incapacity to effectively differentiate between surface types, Logistic 

Regression and AdaBoost fared badly in these metrics, exhibiting reduced precision and recall. The detailed Confusion Matrix 

of each model can be seen in Figure 7. 
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Figure 7. 

Confusion Matrix Comparison of Each Model. 

 

3.2. Model Size and Pruning 

The model size is a crucial factor to take into account while deploying embedded systems.  Reducing the size of machine 

learning models without compromising performance is crucial because of the memory and processing power limitations on 

devices like microcontrollers and IoT platforms. 
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Table 3. 

Random Forest and XGBoost Model Size before and after Pruning. 

File Name Size (KB) 

Original Random Forest.h 43,835 KB 

Original XGB Classifier.h 3,893 KB 

Pruned Random Forest.h 19,603 KB 

Pruned XGB Classifier.h 102 KB 

 

As shown in Table 3, the first versions of the Random Forest and XGBoost models were 43,835 KB and 3,893 KB, 

respectively. For embedded systems with small memory capacities, such microcontrollers, which normally have memory 

capacities between 32KB and 256KB, these sizes are impractical. The model sizes were greatly decreased during trimming. 

The size of the trimmed Random Forest and XGBoost models dropped to 19,603 KB and 102 KB, respectively.  In particular, 

the XGBoost model's significant size reduction allows it to be deployed on devices with limited memory while retaining a 

high classification accuracy. This reduction in size was accomplished by restricting the number of trees in both the Random 

Forest and XGBoost models, eliminating redundant nodes, and pruning less important trees in the ensemble (Random Forest).  

The model became more effective for real-time inference on embedded systems due to the pruning strategies, which removed 

overfitting by deleting less crucial model parameters. 

 

3.3. Model Suitability for Embedded Systems 

XGBoost was shown to be the best model for embedded system deployment when performance and model size were 

taken into account. The trimmed XGBoost model was perfect for TinyML applications with limited memory and processing 

power because it was much smaller (102 KB) and showed high classification accuracy (91%). Random Forest, on the other 

hand, has a very large trimmed model size (19,603 KB), which could be an issue for devices with extremely limited resources, 

even though it offers comparable speed. 

Despite having a respectably high accuracy of 86%, the KNN model might not be the best choice for embedded systems 

because it lacks built-in model size reduction strategies. Compared to models like XGBoost or Random Forest, where only 

the learnt parameters are needed for inference, KNN is less effective for deployment in embedded devices because it depends 

on keeping complete training data for classification. 

Feature significance analysis offers important information about which sensor values are most important for surface 

categorization, especially for models like Random Forest and XGBoost. Gyroscope data, such as gyro-Z, and accelerometer 

readings, like acc-Z and acc-Y, were the main factors influencing model choices. These characteristics had the greatest 

influence on classification performance, suggesting that rotational movement along particular axes and acceleration are 

important surface type differentiators. 

In real-world applications, where comprehending the model's decision-making process is essential for troubleshooting 

or enhancing model performance, the interpretability of these models is especially significant. Both XGBoost and Random 

Forest offer feature relevance scores, which let users see which features influence the model's choices. This interpretability 

helps with model refinement, especially when some features may need to be improved or better preprocessed. 

The study's findings have applications in the implementation of machine learning models in agricultural machinery, 

including self-driving tractors. For real-time surface recognition, XGBoost presents a viable option, especially in situations 

with limitations like embedded devices. One significant benefit in the context of driverless cars or Internet of Things devices 

is the capacity to trim and shrink models without compromising accuracy. 

With an emphasis on performance and model size for embedded deployment, this study assessed a number of machine 

learning models for surface classification in tractors. The most successful model was XGBoost, which achieved high 

classification accuracy and a small model size, making it appropriate for use in IoT devices with limited resources.  Models 

were successfully pruned to minimize their size, especially for XGBoost, which made them suitable for TinyML applications.  

For effective implementation in operational contexts, future work can concentrate on further improving these models to 

improve their real-time performance and further minimize their memory footprint. 
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Figure 8. 
XGBoost Model deployment results on ESP32. 

 

According to the ESP32 surface categorization deployment data as Figure 8, the XGBoost model's overall accuracy is 

82.43%. This shows that the model accurately identified the surface type out of all the predictions it generated. A range of 

projected and actual surface types for individual samples are included in the results, which demonstrate how well the deployed 

model performed in various test scenarios. 

With several accurate forecasts (e.g., Samples 1903, 1909, 1913, 1919, 1923, 1929), the model seems to work well on 

some surface types, such as Class 6. Misclassifications are also noted, though, especially in the instance of Class 0, where 

Sample 1906 is mistakenly projected as 0 rather than the true Class 3. Misclassifications indicate places where the model 

may be having trouble differentiating between specific surface types, such as when it predicts Class 1 when the actual class 

is 6 (e.g., Sample 1916). 

The model's overall accuracy of 82.43% indicates that it is generally reliable but still has potential for development, 

especially when it comes to differentiating across classes that may have similar characteristics. Particularly in embedded 

contexts like ESP32, where CPU resources are constrained, extra fine-tuning, feature selection or even investigating more 

sophisticated model optimization techniques could increase accuracy and lower misclassification rates. 

 

4. Conclusion 
This research applied surface recognition in autonomous tractors by using machine learning models. The results 

demonstrate percentage accuracy of surface recognition. The models with the highest accuracy in our investigation were 

Random Forest and XGBoost, with 90 percent and 91 percent, respectively. This suggests that both models performed 

exceptionally well at differentiating across various surface types. With accuracies of about 86 percent, K-Nearest Neighbors 

(KNN) and Gradient Boosting also have shown strong performance. However, models such as AdaBoost and Logistic 

Regression demonstrated comparatively lower accuracy ratings of 51 percent and 53 percent, respectively, indicating that 

they were less able to capture the intricacies in the data. Particularly with unbalanced datasets, precision, recall, and F1 score 

provide a more detailed picture of model performance. The models that performed the best in these metrics were Random 

Forest and XGBoost, which showed balanced precision and recall for all surface types. With a macro F1 score of 0.90, 

XGBoost demonstrated a healthy trade-off between recall and precision. Further demonstrating its incapacity to effectively 

differentiate between surface types, Logistic Regression and AdaBoost fared poorly in these metrics, exhibiting reduced 

precision and recall. In order to provide a thorough foundation for practical precision agricultural applications, ongoing 

research will concentrate on assessing the effects of pruning and quantization on inference speed and accuracy on real 

embedded hardware. 
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