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Abstract 

In the field of data mining, imbalanced big data has emerged as a critical challenge, characterized by a disproportionate 

distribution of classes within large datasets. This phenomenon often results in biased models that underperform on minority 

classes, compromising the overall effectiveness of predictive analytics. Standard machine learning algorithms may struggle 

to accurately classify underrepresented instances, leading to predictions that reflect majority class tendencies rather than the 

true underlying patterns. To effectively address these challenges, it is imperative to employ advanced methods. This work 

presents a novel hybrid approach designed to mitigate the challenges of imbalanced big data classification effectively by 

employing clustering and sampling methods. Our proposed approach aims to reduce data volume, enhance veracity 

(improving performance metrics), and accelerate execution time, all while preserving essential attributes and ensuring data 

reliability. The results demonstrate that our approach achieves superior accuracy, AUC, F1-score, and G-means metrics 

compared to scenarios lacking data balancing strategies. Furthermore, we evaluate our proposed method against current 

methods in the field using large imbalanced datasets. Notably, our method exhibits an impressive accuracy rate approaching 

100%, with improvements ranging from 17% to 22% across all performance metrics assessed, thus underscoring its 

effectiveness in addressing the challenges associated with imbalanced big data classification. 
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1. Introduction 

The realm of scientific computing is currently experiencing a surge in diverse data sources characterized by fine 

granularity and low latency, collectively termed "Big Data." This type of data surpasses the storage, processing, and analytical 

capabilities of traditional databases. Whether generated by users or automated processes, Big Data offers deeper insights into 

contemporary realities. Laney [1] described Big Data in 2001 through three dimensions: Volume, Variety, and Velocity, 

known as the three V's. Machine learning encounters substantial challenges in managing Big Data, particularly due to the 

extensive execution time required by algorithms. To mitigate these issues, frameworks like Hadoop [2] and the MapReduce 

model have been developed, enabling machine learning to function in distributed environments [3, 4]. Research has largely 

focused on enhancing algorithms via distributed architectures and parallel computing [5, 6]. For instance, one study [7] 

improved the Random Forest method by introducing dual pruning, which allows for parallel computations under the 

MapReduce algorithm, thereby boosting classification performance in Big Data. Another work [8] examined the impact of 

Random Under-Sampling (RUS) on imbalanced Big Data using Hadoop and Spark, revealing that RUS significantly 

improved classification performance in datasets with up to 12 million instances based on the Geometric Mean [9]. 

In recent years, there has been increasing scholarly interest in the challenges posed by imbalanced data [10-16]. 

Imbalanced data arises when class distributions are unequal, often resulting in learning difficulties. The majority classes 

represent a large portion of the dataset [17] while minority classes are underrepresented. For example, fraudulent transaction 

datasets frequently exhibit such imbalances, where only 5% of observations indicate fraud [18]. This issue is prevalent across 

various fields, including banking [18, 19], medical diagnostics [20], and reservoir identification in oil transport [21, 22]. 

Traditional classifiers aim to enhance overall accuracy [23] but often favor the majority class in imbalanced scenarios, leading 

to significant misclassification of minority classes [17, 24]. 

This paper presents the proposed approach, which integrates a clustering method and the SMOTE technique to tackle 

class imbalance in Big Data. The approach involves applying the K-Means (Two Levels) algorithm twice: first to cluster big 

datasets, then using SMOTE to generate synthetic examples of the minority class within each cluster. K-Means is reapplied 

for under-sampling the majority classes in each cluster. Results indicate that the proposed method is highly effective in 

addressing class imbalance. 

The paper is organized as follows: Section 2 reviews the approach to class imbalance, highlighting recent methods in 

Big Data. Section 3 discusses the research methodology, including cluster sampling and model construction, emphasizing 

the selection of appropriate evaluation metrics for machine learning models. Section 4 presents experimental results and a 

detailed discussion, while Section 5 concludes with insights and future research directions. 

 

2. Related Work 
The last decade has witnessed widespread adoption of supervised learning algorithms for classification tasks involving 

imbalanced datasets [25]. Despite their popularity, these approaches often fall short in capturing essential data characteristics, 

leading to suboptimal prediction accuracy. Multiple solutions have emerged [15, 26, 27] to tackle imbalanced data challenges, 

particularly in the big data domain, which we examine in this work. The scientific community has demonstrated increasing 

attention to imbalanced learning challenges [10, 13, 16]. Such datasets present unique difficulties in classification tasks, 

primarily due to the disproportionate representation of different classes in training samples. Researchers have developed three 

main solution categories: data manipulation approaches, algorithmic modifications, and cost-based strategies [12, 28, 29]. 

Data manipulation approaches seek to rebalance class distributions through sampling modifications [30]. These 

methodologies restructure datasets while preserving the original loss function mechanics, either through minority class 

enhancement or majority class reduction [31, 32]. The field has produced numerous sampling innovations, from basic random 

sampling techniques [30] to more sophisticated approaches like SMOTE [33] and specialized oversampling methods [34, 

35], each presenting distinct benefits and limitations [36]. Algorithmic modifications focus on enhancing existing 

classification methods to minimize majority class bias. This has led to the development of specialized boosting algorithms, 

particularly for traditional classifiers such as decision trees [37] and support vector machines [38]. Combined methodologies, 

particularly those incorporating ensemble techniques [39], integrate multiple strategies for handling class imbalances. Two 

prominent ensemble approaches are Bagging and Boosting. The former creates multiple classifiers using different data 

subsets, combining their outputs to minimize prediction variance [40]. The latter develops independent weak learners and 

aggregates their predictions through voting or averaging mechanisms [41]. Additionally, stacking employs a hierarchical 

approach, where initial model predictions serve as input features for a meta-model, which generates final predictions through 

weighted averaging [42]. 

The field of Big Data analysis has seen significant advancements in dimensionality reduction techniques aimed at 

optimizing predictive capabilities. Contemporary research largely centers on distributed computing architectures that 

facilitate parallel processing of massive datasets [6, 7] with particular attention to K-Means clustering and sampling 

methodologies. A groundbreaking contribution by Lin and colleagues [34] presented a clustering-based under-sampling 

framework for handling imbalanced data. Their dual-strategy approach reduces the majority class samples to match the 

minority class quantities through clustering. While their first method utilizes cluster centroids as majority class 

representatives, their second approach employs nearest-neighbor selection around these centers. Comparative analysis 

demonstrated the superior performance of their second strategy against five contemporary methods. Building on this 

foundation, researchers [43] developed the Cluster-Based Instance Selection (CBIS) methodology, which synthesizes 

clustering analysis with selective instance sampling. This innovative approach subdivides the majority class samples into 

distinct clusters before eliminating non-representative instances. When implemented with bagging and boosting-based MLP 

ensemble classifiers, CBIS demonstrated consistent superiority across various clustering algorithms and instance selection 
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methods. A notable application-specific study [44] extended these concepts to autism gene prediction, enhancing Lin's 

methodology through refined K-Means clustering for majority class sample reduction. Their results revealed marked 

improvements over both unbalanced approaches and existing methodologies, opening new avenues in autism-related gene 

identification. Addressing data quality concerns, the SMOTE-TLNN-DEPSO framework45 was introduced to eliminate noise 

and borderline cases through an innovative two-layer natural neighbors approach. This method incorporates a sophisticated 

hybrid optimization algorithm combining differential evolution with particle swarm optimization, proving particularly 

effective for datasets with attribute noise. A recent innovation [25] tackled imbalanced learning through a comprehensive 

tabular data sampling approach. This method combines K-nearest neighbors for efficient normal sample reduction with a 

novel Tabular Auxiliary Classifier GAN (TACGAN) for attack sample generation. The integration of dual loss functions in 

TACGAN's generator ensures minimal information loss, resulting in high-quality balanced datasets through the merger of 

undersampled normal data and synthesized attack samples. 

 

3. Proposed Work 
We propose the TLKMeans-S approach (Two-Level K-Means and SMOTE) to tackle the issue of imbalanced data by 

integrating Two-Level K-Means (for clustering (L1) and undersampling (L2)) with the SMOTE technique (for 

oversampling). Initially, we cluster the dataset to uncover natural groupings, helping to understand underlying patterns. Next, 

SMOTE generates synthetic examples of the minority class to enhance its representation by creating new data points between 

neighboring minority instances. We also perform undersampling to decrease the majority class instances, striving for a 

balanced distribution. These oversampling and undersampling processes are conducted separately to ensure accuracy. By 

combining these techniques, TLKMeans-S aims to balance classes and improve the performance of machine learning models 

on imbalanced datasets. This innovative integration of clustering, undersampling, and oversampling presents a promising 

solution for effectively managing imbalanced data, ultimately enhancing the accuracy and reliability of predictive models. 

The working principle of our proposed method, TLKMeans-S, is visually depicted in Figure 1. 

 

 
Figure 1. 

Operating scenario of our proposed TLKMeans-S approach. 

 

The operating principle of our approach mode consists of the following steps. 

• Clustering: The dataset is partitioned into k clusters using the K-Means algorithm, grouping data based on similarities. 

• Sampling and Balancing: The dataset is balanced through a combination of SMOTE for oversampling the minority 

class and K-Means undersampling to reduce the majority class instances, achieving a more equitable distribution. 
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• Evaluation: Cross-validation is employed to validate model performance, assessing generalization by splitting the data 

into multiple training and testing subsets. 

• Model Training: Various supervised machine learning models, including Logistic Regression, Naive Bayes, kNN, and 

Random Forest, are trained for prediction, selected for their diverse characteristics. 

• Comparison: Metrics from all models are evaluated and compared to identify the best clustering and classification 

combination for the dataset. 

 

 
Figure 2. 

TLKMeans-S Algorithm Steps: Clustering, Balancing, and Model Evaluation. 

 

The K-Means clustering algorithm is commonly applied to large datasets [45] and is well-suited for parallelization [46]. 

It operates by defining the number of clusters, k, randomly selecting k initial centroids, and calculating the distances between 

these centroids and all other points. Each point is then assigned to the nearest centroid, and the centroids are updated until 

they no longer change. The goal is to minimize the within-cluster sum of squares (WCSS), which measures the variance 

within each cluster.  

The WCSS of the k cluster is given by equation 1. 

𝑊(𝐶𝑘) = ∑ (𝑥𝑖 −𝑚𝑘)
2

xi∈Ck
        (1) 

The total WCSS for all the clusters is given by equation 2: 

∑ ∑ (𝑥𝑖 −𝑚𝑘)
2

xi∈Ck
𝑛
𝑘=1        (2) 

To determine the optimal number of clusters, the Elbow method48 is utilized, plotting the explained variation (WCSS) 

against the number of clusters and identifying the point where the curve bends, indicating the ideal k value. 

Next, the dataset is balanced using the SMOTE algorithm [33] for oversampling minority classes and K-Means 

undersampling to reduce majority classes. SMOTE generates synthetic data for the minority class, aiming for an 80% 

increase, while the majority class is adjusted to match the number of minority instances. Metric estimates are obtained through 

10-fold cross-validation, where the dataset is divided into ten folds, each containing 10% of the data. The algorithm is trained 

on samples from the other folds and tested on the current fold during each iteration. The balanced dataset is then used to train 
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various supervised machine learning models, including Logistic Regression, Naive Bayes, kNN, and Random Forest. To 

evaluate performance, we utilize metrics such as accuracy, F1-score, sensitivity, specificity, AUC, and ROC curves [47]. The 

results from the four classifiers are analyzed and compared to identify the most effective combination of clustering and 

classification techniques. 

 

4. Experiment and Results 
In this section, we discuss and analyze the effectiveness of the proposed approach (TLKmeans-S).  

As an initial step, we carefully selected three datasets of varying sizes (small, medium, and big) to demonstrate the 

superiority of the proposed approach across different data sizes within the realm of imbalanced data. Next, we generalize our 

approach in the context of big data. 

 
Table 1. 

Details of the imbalanced datasets used in the first experimentation. 

Datasets [1] Attributes (R/I/N) Instances Origin IR 

Vehicle 1 18 (0/18/0) 846 Real world 2.9 

Segment 0 10 (19/0/0) 2308 Real world 6.02 

Credit card 31(30/1/0) 284807 Real world 577.9 
a https://sci2s.ugr.es/keel/imbalanced.php#sub60. 

 

To evaluate the classification performance using clustering-based sampling methods, four distinct classifiers were 

developed: Logistic Regression, k-Nearest Neighbor (k-NN), Naïve Bayes, and Random Forest [7]. Furthermore, in this 

work, the chosen method for model assessment is referred to as 'K-fold cross validation (KFold-CV)'. This technique involves 

dividing the original dataset into K subsets. For our experiment, we will use K = 10 partitions. Additionally, we do not rely 

solely on accuracy as the evaluation metric for classifiers. We also compute metrics such as F1-score, Sensitivity, Specificity, 

AUC, and AUC-ROC curve. The clustering-based sampling method utilizes the K-Means algorithm to partition the dataset 

into K clusters. Figure 3 illustrates the datasets before and after applying the K-Means algorithm. Figures Figure 3 (a), Figure 

3 (b), and Figure 3 (c) indicate that the optimal number of clusters, determined by the elbow method, is 3. Each cluster is 

treated as an individual dataset. In Test 1, we calculate the metrics for the four classifiers using the original imbalanced 

datasets. Following this, Test 2 involves recalculating the metrics after balancing the datasets through SMOTE and K-Means 

undersampling methods. Figures 4, 5, and 6 display the datasets and the resulting clusters before and after the balancing 

process. 

 

 
 

 

(a) Vehicle1 dataset 
 

The elbow plot finds the elbow point 
with K=3 

Resulting clusters for Vehicle1 dataset 

 
  

 

(b) Segment0 dataset The elbow plot finds the elbow point 

with K=3 

Resulting clusters for Segment0 

dataset 
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(c) Credit card dataset The elbow plot finds the elbow point 

with K=3 

Resulting clusters for Credit card dataset 

Figure 3. 

K-Means clustering algorithm with elbow method. 

 

    
Vehicle1  Cluster 1 Cluster2  Cluster 3 

    
Balanced Vehicle1   Balanced Cluster 1 Balanced Cluster2  Balanced Cluster 3 

Figure 4. 

Vehicle 1 dataset before and after balancing. 

 

    
Segment0  Cluster 1 Cluster 2  Cluster 3 

  

 

 
Balanced segment0   Balanced Cluster 1 Balanced Cluster2  Balanced Cluster 3 

Figure 5. 

Segment 0 dataset before and after balancing. 

 

 
   

Credit card  Cluster 1 Cluster2  Cluster 3 
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Balanced Credit card   Balanced Cluster 1 Balanced Cluster2  Balanced Cluster 3 

Figure 6. 

Credit card big dataset before and after balancing. 

 

Table 2 presents the total number of samples, minority samples, and majority samples for the three datasets and their 

clusters, both before and after balancing. 

 
Table 2. 

Datasets with class distribution. 

  Vehicle 1 dataset  Segment 0 dataset credit card dataset 

  Class 0 Class 1 Total  Class 0 Class 1 Total  Class 0 Class 1 Total  

Original dataset 629 217 846 1979 329 2308 284315 492 284807 

Cluster 1 311 70 381 884 194 1078 222249 247 222496 

Cluster 2 181 117 298 442 5 447 34421 154 34575 

Cluster 3 137 30 167 653 130 783 27645 91 27736 

Original dataset balanced  503 503 1003 1583 1583 3166 227452 227452 454904 

Cluster 1 balanced 248 248 496 707 707 1414 177799 177799 355598 

Cluster 2 balanced 144 144 288 Nan Nan Nan 27536 27536 55072 

Cluster 3 balanced 109 109 218 522 522 1044 22116 22116 44232 

 

Test 1: In the first step, we utilize the complete datasets (vehicle 1, segment 0, and credit card) to evaluate the 

performance of the four classifiers. The results for various metrics are detailed in Tables 3-5. In the second step, we apply 

the clustering algorithm to partition the dataset into k clusters. We then assess the metrics for the classifiers within each 

cluster, with the results displayed in Tables 3-5. 

Test 2: We replicate the process from Test 1 after balancing the datasets. Initially, we balance the original dataset using 

SMOTE and K-Means undersampling techniques and evaluate its performance with the four classifiers. Next, we apply the 

clustering algorithm to divide the dataset into k clusters and subsequently balance each cluster using SMOTE and K-Means 

undersampling. We then evaluate the metrics for the classifiers for the balanced clusters. 

In this section, we conduct an empirical comparison of our proposed method against benchmark methods to address 

several questions regarding the learning algorithms. Before presenting the results, it's essential to discuss key considerations 

related to imbalanced datasets. Working with imbalanced data poses inherent challenges in machine learning, and it's crucial 

that our model evaluation remains unbiased. Therefore, it is generally advisable to use the F1-score rather than accuracy for 

such datasets. The AUC score is particularly beneficial as it incorporates prediction probabilities, offering a more 

comprehensive evaluation than the F1-score. Consequently, we recommend prioritizing the AUC over accuracy for 

imbalanced datasets [48-50]. 

Table 3 presents the classification outcomes for the Vehicle1 dataset as determined by four different classifiers: logistic 

regression, Naive Bayes, k-Nearest Neighbors (kNN), and Random Forest. The table displays the accuracy, F1-score, and 

AUC metrics for both Test 1 and Test 2. 
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Table 3. 

Performance metrics evaluation of the four classifiers on vehicle1 dataset. 

  

Logistic 

Regression 
 Naive Bayes   kNN   Random Forest  

  Measure Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

Original dataset 

Accuracy 0.80861 0.84499 0.68556 0.6868 0.76829 0.82808 0.79681 0.8659 

F1-score 0.56879 0.85016 0.50916 0.69675 0.53728 0.84626 0.53753 0.87487 

AUC 0.87278 0.91882 0.71431 0.72796 0.82928 0.8928 0.87143 0.94416 

Cluster 1 

Accuracy 0.82422 0.90331 0.7587 0.73976 0.81619 0.87506 0.81646 0.89122 

F1-score 0.45866 0.90625 0.5175 0.76209 0.45361 0.88888 0.41857 0.89901 

AUC 0.90337 0.95148 0.79653 0.81785 0.8396 0.92541 0.88093 0.97059 

Cluster 2 

Accuracy 0.86943 0.86798 0.70517 0.71207 0.67529 0.68387 0.72851 0.78128 

F1-score 0.82616 0.87123 0.69783 0.7453 0.60301 0.71995 0.65774 0.80384 

AUC 0.93854 0.93724 0.80161 0.80867 0.77489 0.78539 0.84975 0.85867 

Cluster 3 

Accuracy 0.8261 0.90411 0.65662 0.76169 0.83162 0.86688 0.83199 0.91299 

F1-score NaN 0.90965 0.40699 0.79058 NaN 0.88248 NaN 0.91369 

AUC 0.86081 0.95008 0.74267 0.82207 0.73974 0.90905 0.7696 0.97843 

Average clusters 

Accuracy 0.83992 0.8918 0.70683 0.73784 0.77437 0.8086 0.79232 0.86183 

F1-score 0.64241 0.89571 0.54077 0.76599 0.52831 0.83044 0.53815 0.87218 

AUC 0.90091 0.94627 0.78027 0.8162 0.78474 0.87328 0.83343 0.9359 
 

The comparison of classifier performance between Test 1 and Test 2 revealed significant improvements across all 

classifiers when datasets were balanced. Specifically, Logistic Regression showed increases of 3.64% in accuracy, 28.14% 

in F1-score, and 4.60% in AUC, with Cluster 3 demonstrating the best performance. Naïve Bayes exhibited a 0.12% rise in 

accuracy, an 18.76% increase in F1-score, and a 1.63% boost in AUC, notably with Cluster 3 achieving a 10.51% gain in 

accuracy and a 38.36% rise in F1-score. kNN also improved, with accuracy rising by 5.98%, F1-score by 30.90%, and AUC 

by 6.35%, particularly in Cluster 1. Random Forest showed the most impressive results, with a 6.90% increase in accuracy, 

a 33.73% rise in F1-score, and a 7.27% improvement in AUC, especially in Cluster 3. Overall, Test 2 consistently 

outperformed Test 1, indicating that balanced datasets enhance performance, with Cluster 3 emerging as the top performer, 

particularly excelling in AUC metrics. The Random Forest classifier was the most effective across all metrics, highlighting 

its superiority when datasets are balanced. 

We will compare the results of each classifier by examining the performance graphs across different clusters, focusing 

specifically on three key metrics: accuracy, F1-score, and AUC. 

 

 
Figure 7. 

Performance metrics classifiers on vehicle1 dataset. 
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Logistic Regression (imbalanced dataset) Naïve bayes (imbalanced dataset) kNN (imbalanced dataset) Random forest (imbalanced 

dataset) 

    

Logistic Regression (balanced dataset) Naïve bayes (balanced dataset) kNN (balanced dataset) Random forest (balanced dataset) 

Figure 8. 

AUC-ROC Curve of the four classifiers on vehicle1 dataset. 

 

    

Logistic Regression (imbalanced 

dataset) 

Naïve bayes (imbalanced dataset) kNN (imbalanced dataset) Random forest (imbalanced 

dataset) 

    
Logistic Regression (balanced 

dataset) 

Naïve bayes (balanced dataset) kNN (balanced dataset) Random forest (balanced dataset) 

Figure 9. 

AUC-ROC Curve of the four classifiers on cluster 3 (vehicle1 dataset). 

 

1 recorded the best AUC at 0.90. For the Naive Bayes classifier (Figure 7 (b)), Test 1 revealed that cluster 1 had the 

highest accuracy of 80%, while cluster 2 excelled in F1-score with 0.78 and AUC of 0.82. In Test 2, cluster 3 outperformed 

with an accuracy of 85%, F1-score of 0.81, and AUC of 0.88. For the kNN classifier (Figure 7 (c)), Test 1 showed that cluster 

3 achieved the highest accuracy of 82%, cluster 2 led in F1-score with 0.80, and cluster 1 had the best AUC at 0.86. In Test 

2, cluster 1 topped all metrics with an accuracy of 86%, F1-score of 0.83, and AUC of 0.89. Finally, for the Random Forest 

classifier (Figure 7 (d)), Test 1 indicated that cluster 3 had the highest accuracy at 85%, cluster 2 achieved the best F1-score 

of 0.84, and cluster 1 recorded the highest AUC at 0.91. In Test 2, cluster 3 delivered the best metrics across the board, 

achieving an impressive accuracy of 90%, F1-score of 0.88, and AUC of 0.95. 

In general, these results provide valuable insights into the performance of each classifier across different clusters, 

highlighting where optimal results are achieved for each metric. The AUC-ROC curves (Figure 8 and Figure 9) further 

illustrate significant improvements after dataset balancing, with a 7% increase for the original dataset and a 12% increase for 

cluster 3. The Random Forest classifier emerged as the best performer with an AUC of 98%, indicating its superior ability to 

classify the positive class in this dataset compared to Logistic Regression, Naive Bayes, and kNN. 

Table 4 presents a comprehensive overview of the performance metrics, including accuracy, F1-score, and AUC, for 

both Test 1 and Test 2 evaluations of the Segment0 dataset. The results encompass three individual clusters, alongside the 

average metrics calculated across all clusters collectively. 
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Table 4. 

Performance metrics evaluation of the four classifiers on Segment 0 dataset. 

  Logistic Regression Naive Bayes kNN Random Forest 
 Measure Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

Original dataset 

Accuracy 0.9974 0.99684 0.83317 0.89261 0.9922 0.99463 0.9974 0.99747 

F1-score 0.99082 0.99683 0.63208 0.90225 0.97259 0.99467 0.99072 0.99748 

AUC 0.99904 0.99933 0.98207 0.98552 0.99933 0.99904 0.99992 1 

Cluster 1 

Accuracy 0.99907 0.99787 0.82193 0.89037 0.99072 0.99364 0.99814 0.99929 

F1-score 0.9973 0.99789 0.6625 0.90008 0.97405 0.99374 0.99473 0.99928 

AUC 1 0.99998 0.97515 0.98085 0.99971 0.99927 1 1 

Cluster 2 

Accuracy 0.99907 NaN 0.82193 NaN 0.99072 NaN 0.9972 NaN 

F1-score 0.9973 NaN 0.6625 NaN 0.97405 NaN 0.99188 NaN 

AUC 1 NaN 0.97515 NaN 0.99971 NaN 1 NaN 

Cluster 3 

Accuracy 0.99234 0.98564 0.75479 0.84483 0.99362 0.9952 0.99745 0.99713 

F1-score 0.97631 0.98558 0.57816 0.86609 0.98089 0.99526 0.992 0.99712 

AUC 0.99553 0.9983 0.99623 0.99739 0.99569 0.99802 0.99953 1 

Average` clusters 

Accuracy 0.99682 0.99176 0.79955 0.8676 0.99169 0.99442 0.9976 0.99821 

F1-score 0.9903 0.99174 0.63438 0.88309 0.97633 0.9945 0.99287 0.9982 

AUC 0.99851 0.99914 0.98217 0.98912 0.99837 0.99864 0.99984 1 

 

 

The results presented in Table 4 illustrate the varied performance of several classifiers, highlighting trends between Test 

1 and Test 2 evaluations. Logistic Regression experienced a slight overall accuracy decrease of 0.06%, yet demonstrated 

improvements in F1-score by 0.60% and AUC by 0.03%. Notably, cluster 1 saw a 0.12% drop in accuracy, accompanied by 

a 0.06% F1-score enhancement, while cluster 3 exhibited a more pronounced 0.67% accuracy decline but significant gains 

in F1-score (0.93%) and AUC (0.28%). In contrast, Naive Bayes showcased substantial improvements, with an accuracy 

increase of 5.94%, a remarkable 27.02% rise in F1-score, and a 0.34% boost in AUC, particularly excelling in cluster 3 with 

a 9% accuracy increase and a 28.79% F1-score improvement, leading to an overall average enhancement of 6.80% in accuracy 

and 24.87% in F1-score across clusters. Meanwhile, Random Forest displayed negligible changes, with only a 0.01% 

accuracy increase and slight declines in F1-score (0.68%) and AUC (0.01%); cluster 1 suffered a 0.12% accuracy drop and 

a 0.45% F1-score reduction, while cluster 3 saw a minor accuracy increase of 0.03% but declines in both F1-score (0.51%) 

and AUC (0.05%). 

From Figure 10, we observe an enhancement in performance metrics, particularly in the AUC measure, across all 

classifiers when compared to the average clusters and the original dataset. For the logistic regression classifier (Figure 10 

(a)), we noted improvements of 0.26% and 0.29% in T1 and T2, respectively, relative to the original dataset. In the case of 

the Naive Bayes classifier (Figure 10 (b)), improvements of 19.93% and 16.81% were recorded for T1 and T2, respectively, 

compared to the original dataset. The KNN classifier (Figure 10 (c)) also showed improvements of 0.64% in T1 and 0.26% 

in T2 relative to the original dataset. For the Random Forest classifier (Figure 10 (d)), we observed stability in the AUC for 

both scenarios (average clusters and original dataset), along with an increase in accuracy compared to the original dataset. 

 

 
Figure 10. 

Performance metrics of four classifiers on the Segment0 dataset. 

 

Table 5 presents the classification results for the credit card dataset, which is large and extremely imbalanced, organized 

into four sub-tables for the Logistic Regression, Naive Bayes, kNN, and Random Forest classifiers. Each sub-table details 
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performance metrics, including accuracy, F1-score, and AUC for both Test 1 and Test 2. The results are categorized for the 

entire dataset, as well as for the three clusters, alongside the average metrics computed across the three clusters. 

 
Table 5. 

Performance metrics evaluation of the four classifiers on Credit card dataset. 

    Logistic Regression  Naive Bayes  kNN  Random Forest 

  Measure Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

original dataset 

Accuracy 0.99919 0.95973 0.9778 0.9189 0.99951 0.99861 0.99953 0.98751 

F1-score  0.72546 0.95878 0.11445 0.91409 0.84564 0.99861 0.84919 0.98737 

AUC 0.97595 0.992 0.96091 0.9601 0.92477 0.99959 0.99992 0.99966 

Cluster 1 

Accuracy 0.99938 0.9643 0.98135 0.91277 0.99968 0.99914 0.9997 0.99535 

F1-score  0.66489 0.96357 0.08878 0.90658 0.83923 0.99914 0.84997 0.99533 

AUC 0.95586 0.99524 0.95315 0.96001 0.91076 0.99977 0.9681 0.99994 

Cluster 2 

Accuracy 0.99873 0.96752 0.9648 0.92902 0.99873 0.99586 0.99873 0.99731 

F1-score  0.83341 0.96718 0.18384 0.92676 0.84938 0.99588 0.84064 0.99731 

AUC 0.98328 0.99664 0.96826 0.95996 0.93723 0.9986 0.97717 0.99992 

Cluster 3 

Accuracy 0.99874 0.96082 0.97725 0.90862 0.99895 0.99828 0.99906 0.9993 

F1-score  0.76349 0.96027 0.19704 0.90314 0.81249 0.99829 0.83275 0.9993 

AUC 0.97274 0.9934 0.97666 0.97718 0.91195 0.99941 0.98259 0.99995 

Average clusters 

Accuracy 0.99895 0.96421 0.97447 0.9168 0.99912 0.99776 0.99916 0.99732 

F1-score  0.75393 0.96367 0.15655 0.91216 0.8337 0.99777 0.84112 0.99731 

AUC 0.97063 0.99509 0.96602 0.96572 0.91998 0.99926 0.97595 0.99994 

 

From Table 5, we notice that the classification results across different classifiers reveal notable trends and performance 

variations between Test 1 and Test 2. For the Logistic Regression classifier, the original dataset saw a decrease in accuracy 

of 3.95%, but significant improvements were noted in the F1-score (23.33%) and AUC (1.60%). Cluster-wise, Cluster 1 led 

with an F1-score increase of 29.87% and an AUC boost of 3.94%, despite a 3.51% drop in accuracy. The Naive Bayes 

classifier exhibited a 5.89% decline in accuracy overall, yet a remarkable 79.96% increase in F1-score, with minor changes 

in AUC. Cluster 1 again performed best in F1-score and AUC. The kNN classifier showed minimal accuracy loss (0.09%), 

but a substantial F1-score improvement (15.30%) and AUC increase (7.48%). Cluster 1 excelled in both metrics, while 

Cluster 3 led in AUC improvements. Lastly, the Random Forest classifier experienced a slight accuracy decrease (1.20%) 

but significant enhancements in F1-score (13.82%) and minor AUC changes. Cluster 3 demonstrated the most favorable 

outcomes, outperforming others in accuracy and F1-score measures. As a result, Cluster 3 emerged as the best-performing 

sample across classifiers, suggesting distinct characteristics that enhance model performance. 

The evaluation of classifiers across three key metrics: accuracy, F1-score, and AUC yields insightful findings. For the 

Logistic Regression classifier (Fig. 10 (a)), Test 1 revealed that Cluster 1 had the highest accuracy (99.99% in Test 1 and 

99.98% in Test 2), while Cluster 2 excelled in F1-score, showing an improvement of 10% in Test 1 compared to the original 

dataset. In the Naive Bayes classifier (Fig. 10 (b)), Cluster 1 led in accuracy for Test 1 (99.96%), whereas Cluster 2 

demonstrated the best F1-score, with an improvement of 8% in Test 1 compared to the original dataset. Cluster 3 also showed 

an improved F1-score, with a 3% enhancement in Test 1. The kNN classifier (Fig. 10 (c)) maintained consistent performance 

metrics, with no significant improvements in Test 1 or Test 2. Lastly, for the Random Forest classifier (Fig. 10 (d)), Cluster 

1 delivered the best accuracy and F1-score in Test 1, while Cluster 3 showed the most favorable results across all metrics in 

both Test 1 and Test 2. 
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Figure 11. 

Performance metrics of four classifiers on the Credit card dataset. 
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Figure 12. 

AUC-ROC Curve of the four classifiers on credit card dataset. 
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Figure 13. 

AUC-ROC Curve of the four classifiers on cluster 3 (credit card dataset). 

 

After a thorough analysis of the AUC-ROC curves from Figure 12, we observe that the maximum results achieved by 

all classifiers remain consistent and identical in both experiments, both without data balancing and after applying SMOTE 

for balancing. Notably, the Naive Bayes classifier exhibits a slight improvement of 1% in performance after balancing. The 

AUC values obtained from the ROC curves underscore the excellent performance of all four classifiers, indicating their robust 

ability to distinguish between classes effectively. This consistent performance across both experimental conditions highlights 

the reliability of these classifiers in handling the dataset. 

In our evaluation of classifiers on imbalanced datasets, we employed data balancing techniques like SMOTE, which 

significantly enhanced classification outcomes, evidenced by a notable 2% performance improvement in both the original 

dataset and Cluster 3 (Figure 13). Among the classifiers tested, Random Forest was the top performer, achieving a perfect 

accuracy of 100% and surpassing Logistic Regression, Naive Bayes, and kNN in AUC-ROC curves, highlighting its 

robustness in identifying positive instances. Our extensive evaluation compared performance metrics from two tests, with 

Test 2 showing improvements across various datasets: for the Vehicle1 dataset, accuracy increased by 0.30% to 4.36%, F1-

score by 8.75% to 18.76%, and AUC by 2.05% to 3.99%. In the Segment0 dataset, accuracy improved by 0.02% to 5.94%, 

and F1-score by 0.20% to 23.98%, while AUC saw a marginal improvement of 0% to 0.38%. The Credit Card dataset 

displayed a remarkable F1-score enhancement of 14.93% to 72.97% and an AUC improvement of 0% to 4%, though accuracy 

declined by 0.04% to 5.23%. Despite a slight trade-off in accuracy for some datasets, our proposed method effectively 

addressed class imbalance, demonstrating superior results in key metrics compared to existing machine learning methods 

[46, 51-55]. Notably, our method achieved a 3.29% improvement in accuracy and 5.58% in sensitivity over previously 

proposed methods [55]. This work advances techniques for handling class imbalance and lays a foundation for further 

exploration in various domains. 

We emphasize the significant role of runtime in processing imbalanced data, particularly in the context of big data, and 

thus, we will present the findings related to runtime efficiency. Table 6 showcases the runtime of classifiers across different 

datasets and their clusters, both before and after balancing. This assessment is geared towards evaluating the scalability of 

models and the influence of sample size, with execution times graphically illustrated in Figures 14-16 for the four classifiers 

across the three datasets. 
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Table 6. 

Runtime of classifiers for Test 1 and Test 2. 

Vehicle1 original dataset cluster1 cluster2 cluster3 

logistic regression 0.332 0.28 0.259 0.155 

Naive Bayes 0.029 0.034 0.038 0.025 

kNN 0.149 0.043 0.052 0.046 

Random Forest 5.289 4.131 4.524 3.924 

a.        Vehicle1 dataset 

Segment0 original dataset cluster1 cluster2 cluster3 

logistic regression 0.346 0.189 0.058 0.169 

Naive Bayes 0.048 0.047 0.014 0.031 

kNN 0.382 0.163 0.033 0.098 

Random Forest 6.872 4.555 1.897 4.571 

b.       Segment0 dataset 

Credit card original dataset cluster1 cluster2 cluster3 

logistic regression 34.283 35.918 9.559 4.883 

Naive Bayes 4.137 3.156 0.631 0.41 

kNN 1623.613 938.321 24.643 12.678 

Random Forest 4822.329 2393.983 314.266 196.373 

c.        Credit card dataset 

Vehicle1 original dataset cluster 1 cluster 2 cluster3 

logistic regression 0.413 0.282 0.182 0.165 

Naive Bayes 0.031 0.032 0.028 0.028 

kNN 0.241 0.081 0.038 0.038 

Random Forest 5.473 4.647 4.149 3.846 

a.        Vehicle1 dataset 

Segment0 original dataset cluster1 cluster2 cluster3 

logistic regression 0.333 0.204 NaN 0.224 

Naive Bayes 0.054 0.034  0.036 

kNN 0.343 0.185  0.118 

Random Forest 10.054 5.689  5.564 

b.       Segment0 dataset 

Credit card original dataset cluster1 cluster2 cluster3 

logistic regression 133.853 84.165 12.175 9.471 

Naive Bayes 7.192 4.676 0.696 0.54 

kNN 3888.993 2047.857 49.416 32.812 

Random Forest 5004.4 3131.446 454.579 277.991 

c.        Credit card dataset 

 

All classifiers exhibit a more substantial reduction in runtime for clusters compared to the original datasets, with kNN 

demonstrating the most notable reduction in both tests. In the Vehicle1 and Segment0 datasets, the classifiers are ranked 

based on runtime reduction as follows: Logistic Regression, Random Forest, and Naive Bayes. Conversely, for the Credit 

Card dataset, the ranking is: Random Forest, Logistic Regression, and Naive Bayes. The kNN classifier stands out for its 

exceptional performance in reducing execution time, achieving reductions ranging from 71.49% to 77.45% for the Vehicle1 

dataset, 65.66% to 91.23% for the Segment0 dataset, and a remarkable 99.16% to 99.22% for the Credit Card dataset. 

Particularly noteworthy are the profound runtime reductions observed in the Credit Card dataset, with reductions ranging 

from 85.76% to 99.22% in Test 1 and from 92.92% to 99.16% in Test 2. 
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Figure 14. 

Classifiers Runtime in seconds for Test 1 and 2 on Vehicle1 dataset. 

 

 
Figure 15. 

Classifiers Runtime in seconds for Test 1 and 2 on Segment0 dataset. 
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Figure 16. 

Classifiers Runtime in seconds for Test 1 and 2 on Credit card dataset. 

 

Based on previous experiments, we conclude that the proposed TLKMeans-S method is effective for handling 

imbalanced data of all sizes, including small, medium, and large datasets. Big data presents a significant challenge in terms 

of class imbalance. Therefore, we will now discuss some recent methods that have been compared in the context of 

imbalanced big data classification. To further validate our proposed method's applicability in real-world scenarios and 

demonstrate its superiority, we conducted a separate experiment using large and highly imbalanced original datasets. 

 
Table 7. 

Performance Metrics of TLKMeans-S in the Context of Big Data. 

 

The experimental results presented in Table 7 demonstrate the superior performance of TLKMeans-S in handling 

imbalanced big datasets. The proposed method achieves exceptional performance metrics: 99.60% F1-score, 96.4% accuracy, 

and 97.8 G-means. Comparative analysis reveals significant improvements over existing methods, with increases of 16.70% 

in F1-score, 21.09% in accuracy, and 16.6% in G-means. 
a https ://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 
b https://www.bcsc-research.org/data/mammography_dataset/digitial-mammo-dataset-download.  
c https ://www.kaggle.com/datasets/vigneshvenkateswaran/bot-iot 
d https ://archive.ics.uci.edu/dataset/280/higgs 

 

5. Conclusion and Future Work 
In this paper, we introduce the TLKMeans-S approach to tackle the issue of imbalanced large dataset classification. Our 

proposed approach integrates a novel hybrid cluster-sampling framework that combines oversampling and undersampling 

techniques, focusing on a two-level K-Means clustering-undersampling strategy. The process involves dividing the dataset 

into k clusters using a first-level K-Means clustering (initial balancing), treating each cluster as a separate dataset, and then 

applying SMOTE along with a second-level K-Means (final balancing) to achieve balanced classes. The cluster with the most 

favorable evaluation metrics is selected as the representative sample of the original dataset. Additionally, our work makes a 

significant contribution to big data mining processing by reducing data volume, improving performance metrics (veracity), 

and execution speed (velocity), and maintaining data reliability (validity). 

In future work, we aim to develop tailored cluster-sampling methods to effectively address imbalanced classes in large 

datasets. Furthermore, we will explore the implementation and enhancement of cluster-sampling methods on advanced 

 
1 https ://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 
2 https://www.bcsc-research.org/data/mammography_dataset/digitial-mammo-dataset-download.  
3 https ://www.kaggle.com/datasets/vigneshvenkateswaran/bot-iot 
4 https ://archive.ics.uci.edu/dataset/280/higgs 

Methods Stack-AdaB Kumari, 

et al. [56] 

ECSEL Daud, et al. 

[57] 

SMOTE-kTLNN Sun, et 

al. [58] 

TLKMeans-S 

CICIDS2017 

Sharafaldin, et al. 

[59] 

KDD Cup-991 

Mammography2 

BoT_IoT3 

Higgs Boson4 

0.718     0.673   0.742  

0.786     0.742   0.759  

0.841     0.785   0.867  

0.798     0.785   0.766  

0.874     0.785   0.862  

0.748     0.681    0.753  

0.860     0.875    0.872  

0.848     0.880    0.861  

0.890     0.888    0.867  

0.811      0.795   0.822 

0.811     0.780    0.737  

0.847     0.885    0.862  

0.797     0.783    0.798  

0.849      0.825    0.869  

0.874      0.881    0.897  

0.874     0.843    0.877  

0.914      0.905    0.932  

0.833      0.922     0.964  

0.944      0.955     0.936  

0.978      0.996       0.962  
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computing platforms such as GPUs, parallel CPUs, or distributed systems to improve runtime performance. Additionally, we 

plan to investigate the applicability of our method in addressing other challenges in supervised classification tasks, such as 

noisy data and missing data. 
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