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Abstract 

This research investigates the effectiveness of two deep reinforcement learning algorithms, Proximal Policy Optimization 

(PPO) and Advantage Actor-Critic (A2C), in achieving the MPPT for PV systems implemented via a Buck-Boost converter. 

The algorithms were trained and evaluated under varying environmental conditions, including different levels of irradiance 

and temperature. The results are presented through duty cycle heatmaps, power output heatmaps, and performance curves for 

power, voltage, and current. The PPO algorithm demonstrated stable and consistent control across all scenarios, maintaining 

a nearly constant duty cycle and achieving high power output. In contrast, A2C exhibited more adaptive control behavior, 

adjusting the duty cycle based on environmental changes, but showed lower power output under weak irradiance. Overall, 

PPO outperformed A2C in terms of stability, accuracy, and ability to reach the optimal operating point, making it a more 

suitable choice for MPPT applications in PV systems under dynamic conditions. 
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1. Introduction 

The global trend toward renewable energy adoption has been increasing steadily each year, as the international 

community becomes more attentive to reducing reliance on coal-based energy and mitigating carbon dioxide emissions, 

which have detrimental impacts on the environment [1-3]. Thailand, in line with these global efforts, has also recognized the 

importance of such initiatives. Consequently, the Ministry of Energy has formulated policies to promote the use of renewable 

energy in various sectors [4], including the implementation of feed-in tariffs for electricity generated from solar photovoltaic 

(PV) systems by both households and private enterprises [5, 6]. At present, the electricity buy-back rate offered by the utility 

for solar energy is 2.1679 THB per kilowatt-hour (approximately 0.060 USD per unit; note that the exchange rate may 

fluctuate) [7, 8]. This favorable rate, combined with a short payback period of merely 3-4 years, has further incentivized 

investment. Additionally, the process for obtaining grid connection approval has been streamlined by the relevant authorities 

[9]. Governmental and institutional support measures have significantly accelerated the deployment of solar energy systems, 

positioning them as one of Thailand's most prominent renewable energy sources. 

Solar energy is regarded as a clean energy source; as sunlight is freely and directly available to the Earth, it is often 

considered a cost-free resource [10]. When solar panels are exposed to sunlight, the energy causes electrons to move, thereby 

generating electrical power [11-13]. The primary parameters affecting the electrical characteristics of photovoltaic cells are 

temperature and irradiance. An increase in temperature generally leads to a reduction in output power, as illustrated in Table 

1. 

 
Table 1. 

Summary of Parameter Effect on PV Output Power. 

Parameter Effect on PV Output Power Reference 

• Temperature Decrease by ~0.4%–0.5% per °C 

above 25°C 

• Irradiance Decrease linearly with irradiance 

reduction (e.g., 20% drop ~20% drop in power. 

Fraunhofer Institute for Solar Energy Systems ISE [14]; 

National Renewable Energy Laboratory (NREL) [15]; Solar 

Energy International [16] and Boonraksa, et al. [17] 

 

Conversely, when the irradiance increases, the output power of the system also increases. However, in practical 

applications, these factors are difficult to control. Consequently, numerous studies have investigated MPPT techniques to 

ensure that photovoltaic systems operate at their maximum power output at all times, despite changing environmental 

conditions. Several works have compared the efficiency of various converter circuits used in MPPT, including the Buck 

converter, Boost converter, Buck-Boost converter, Cuk converter, Sepic converter, Zeta converter, Synchronous Sepic 

converter, and Synchronous Zeta converter [18-24]. The results indicate that the Synchronous Zeta converter achieves the 

highest efficiency. Nevertheless, due to its complex structure and large number of components, it is less favored compared 

to the Buck-Boost converter [25-27]. 

The MPPT algorithm is another critical component, as it determines how effectively the converter circuit can track the 

maximum power point. Conventional algorithms include Perturb and Observe (P&O) [28] and Incremental Conductance (IC) 

[29], as well as advanced approaches based on artificial intelligence (AI) [30] such as Particle Swarm Optimization (PSO), 

Artificial Neural Networks (ANN) [31], Adaptive Neuro-Fuzzy Inference System (ANFIS) [32], Deep Learning (DL) [33], 

and Deep Reinforcement Learning (DRL). DRL, a subfield of deep learning, stands out for its adaptability to nonlinear and 

time-varying conditions. DRL has demonstrated the ability to manage the nonlinear characteristics and rapidly changing 

environments typical of PV systems, such as fluctuating irradiance and temperature, where conventional algorithms often 

encounter issues with accuracy and tracking speed. [34, 35]. 

Moreover, DRL does not require a precise mathematical model of the system, unlike traditional model-based methods. 

It can learn optimal control policies through real-world interaction and experimentation, bypassing the need to explicitly 

formulate the dynamics of the PV array and power converter [35, 36]. DRL-based MPPT controllers have also exhibited 

faster and more accurate tracking performance compared to classical methods like P&O and IC, especially under partial 

shading or rapidly changing weather conditions [34, 37]. 

Additionally, DRL demonstrates robustness to measurement noise and system uncertainties; its learning ability enables 

the system to remain stable and efficient even when subjected to such disturbances [36]. After sufficient training, DRL agents 

can generalize their learned control strategies to new and previously unseen conditions, making them well-suited for 

deployment across diverse PV system configurations [34, 37]. 

Deep Reinforcement Learning (DRL) algorithms can generally be categorized into three main groups based on their 

methodological architecture: Value-Based Methods, which estimate the value function for each state or state-action pair and 

select actions that maximize expected rewards. Examples include Deep Q-Network (DQN), Double DQN, Dueling DQN, 

and Rainbow DQN. Policy-Based Methods, which directly learn the optimal policy without explicitly estimating the value 

function, are particularly effective for problems with continuous action spaces. Examples include  

REINFORCE (Monte Carlo Policy Gradient), Proximal Policy Optimization (PPO), and Trust Region Policy Optimization 

(TRPO). Actor-Critic Methods combine the strengths of both value-based and policy-based approaches by employing an 

actor to determine the policy and a critic to evaluate the value function. Notable examples are Advantage Actor-Critic (A2C), 

Asynchronous Advantage Actor-Critic (A3C), Deep Deterministic Policy Gradient (DDPG), Twin Delayed DDPG (TD3), 

and Soft Actor-Critic (SAC) [38, 39]. In this research, the focus is narrowed to two state-of-the-art Deep Reinforcement 

Learning algorithms, namely Proximal Policy Optimization (PPO) and Advantage Actor-Critic (A2C), for the task of 

maximum power point tracking in PV systems. 
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Therefore, this research presents a comparative study between PPO-DRL and A2C-DRL algorithms for maximum power 

point tracking in photovoltaic systems using a buck-boost converter. The comparison considers tracking speed, accuracy, 

and efficiency under varying irradiance and temperature conditions, with the aim of providing guidance for selecting the 

most appropriate Deep Reinforcement Learning algorithm for MPPT in PV systems. The application infrastructure of the 

DRL algorithm for MPPT in PV systems is shown in Figure 1.  

 
Figure 1. 

Application infrastructure of DRL algorithm for MPPT in PV systems. 

 

2. Theory and Related Works 
This section provides a comprehensive summary of the fundamental theories essential for the formulation and execution 

of the research. It encompasses key topics including PV System Fundamentals, MPPT, DC-DC Converters for MPPT 

applications, and the application of DRL techniques for MPPT optimization. In addition, a review of related research studies 

is presented to contextualize the current study within the existing body of knowledge. The theoretical background and prior 

research discussed herein serve as the foundation for the development of the proposed research methodology. 

 

2.1. The PV System Fundamentals 

The PV system converts solar energy directly into electrical energy using semiconductor materials. The PV module 

equivalent circuit is shown in Figure 2. In this model, Rs represents the series resistance within the cell, while Rp denotes the 

parallel (shunt) resistance. The relationship between the current and voltage of the solar panel can be expressed 

mathematically by the following Equations 1-2. 

 

    IPV= Iout- ID[ exp (
VPV

VT
) -1]         (1) 

 

    VPV= VTIn[
Iout-IPV

ID
+1]         (2) 

The following parameters are defined: 

IPV is the current generated by the solar panel (A) 

ID  is the reverse saturation current (A) 

Iout is the output current (A) 

VPV   is the voltage generated when the solar panel is exposed to sunlight (V) 

VT is the temperature-dependent voltage 
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Figure 2. 

PV module equivalent circuit [40]. 

 

The performance of PV cells depends significantly on environmental factors such as irradiance and temperature. The 

output voltage and current characteristics are nonlinear, and the point at which maximum power can be extracted (Maximum 

Power Point, MPP) varies with changing conditions [41, 42]. The current-voltage (I-V) characteristics of a conventional 

silicon-based solar cell are depicted in Figure 3. The electrical power generated by the solar cell is given by the product of 

current and voltage, expressed as P = I × V. The curve identifies the MPP, which corresponds to the operating conditions at 

which both the current (Imax) and voltage (Vmax) yield the highest power output. 

 

 
Figure 3. 
The current–voltage (I–V) characteristics of a conventional silicon-based PV panel [43]. 

 

2.2. Maximum Power Point Tracking  

MPPT techniques are used to continuously track and operate PV modules at their maximum power point (MPP), 

maximizing energy harvest. These techniques ensure that the PV system operates at its maximum power point under varying 

environmental conditions. MPPT methods can generally be classified into three main categories:  

1. OFF-line MPPT Techniques 

Off-line MPPT techniques are based on predetermined data or characteristics of the PV system. These methods do not 

require continuous real-time monitoring and adjustment during operation. Instead, they use mathematical models, lookup 

tables, or fixed parameters to estimate the maximum power point. These techniques are generally simpler and easier to 

implement but may not always provide the highest accuracy under rapidly changing conditions. 

2. ON-line MPPT Techniques 

Online MPPT techniques involve real-time measurement and adjustment to continuously track the maximum power 

point as environmental conditions change. They are dynamic and adaptive, making them more effective in practical 

applications where irradiance and temperature can fluctuate. 

3. Intelligent MPPT Techniques 

Intelligent MPPT techniques utilize advanced computational algorithms and artificial intelligence to enhance tracking 

performance, especially in complex or rapidly changing environments. 

Popular algorithms include Perturb and Observe (P&O), Incremental Conductance (INC), and modern artificial 

intelligence-based approaches. The effectiveness of MPPT algorithms is critical for ensuring optimal performance of PV 

systems under dynamic weather conditions [43-45].  The MPPT methods are shown in Figure 4. 
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Figure 4. 

Algorithm of Maximum Power Point Tracking [43]. 

 

2.3. DC-DC Converter for MPPT 

A DC-DC converter (such as Buck, Boost, or Buck-Boost) is typically used as an interface between the PV module and 

the load or battery. The converter’s duty cycle is regulated by the MPPT controller, which adjusts the PV operating point in 

real time to maximize output power [45]. This integration enables the system to follow the MPP despite changes in solar 

irradiance or temperature. In this research, the researcher chose to use the Buck-Boost converter circuit. Therefore, the 

theoretical background specific to this circuit is presented in detail as follows. 

1. Buck-Boost Converter Theory 

 A Buck-Boost Converter is a DC-DC converter capable of both stepping up and stepping down the input 

voltage to achieve a desired output level. By combining the operating principles of buck and boost converters, it 

can deliver output voltages that are either higher or lower than the input. Additionally, this converter can invert 

the polarity of the output voltage, making it suitable for applications requiring a flexible voltage range and polarity 

control. The Buck-Boost converter typically consists of a switch (such as a MOSFET), a diode, an inductor, and 

a capacitor. Its operation can be divided into two main modes: When the switch is ON, the inductor stores energy 

from the input source while the diode prevents current from flowing to the output. When the switch is OFF, the 

energy stored in the inductor is released to the output through the diode, causing the output voltage to either rise 

above or drop below the input, depending on the duty cycle of the switch. Buck-boost converter circuit diagram 

as shown in Figures 5-6. 

 
Figure 5. 

Buck-boost converter circuit diagram [46]. 
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a)      b) 

Figure 6. 

Buck-boost converter circuit diagram: a) Switch S is opened and b) Switch S is closed) [46]. 

 

2.4. Deep Reinforcement Learning for MPPT 

Recent research has applied the DRL algorithms, such as PPO and A2C, to MPPT problems in PV systems. DRL methods 

can learn optimal policies for complex, nonlinear systems without explicit modeling, making them suitable for real-time 

power optimization. Several studies have demonstrated that DRL-based MPPT can outperform traditional algorithms in terms 

of tracking accuracy and speed, especially under rapidly changing environmental conditions [47-49]. 

 

2.4.1. Proximal Policy Optimization algorithm  

PPO is a reinforcement learning algorithm designed to update policies in a stable and efficient manner. It improves 

training by limiting how much the policy can change at each update step, using a clipped objective function to prevent overly 

large shifts. By balancing exploration and exploitation, PPO maintains a steady learning process, making it suitable for a 

wide range of complex environments [50]. Figure 7 shows the Proximal Policy Optimization algorithm pseudocode. 

 

 
Figure 7. 

Proximal Policy Optimization algorithm pseudocode [50]. 

 

2.4.2. Advantage Actor-Critic algorithm 

A2C is a synchronous reinforcement learning method that combines value-based and policy-based approaches. It uses 

two neural networks: one (the actor) to select actions and another (the critic) to evaluate the actions by estimating the 

advantage function. By updating both networks simultaneously, A2C aims to accelerate learning and improve decision-

making stability in dynamic environments [51]. Pseudocode for the A2C algorithm as shown in Figure 8. 
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Figure 8. 

Advantage Actor-Critic algorithm pseudocode [51]. 

 

2.5. Literature Review Summary 

This research explores the application of DRL algorithms, specifically PPO and A2C, for MPPT control in photovoltaic 

systems. Previous studies show that traditional MPPT methods have limitations under dynamic conditions, while DRL offers 

a more adaptive and intelligent control approach. This section briefly reviews related works on MPPT techniques and the use 

of PPO and A2C in energy systems. Summary of relevant research as shown in Table 2. 

 
Table 2. 

Summary of relevant research. 

Ref. Authors & Year DRL 

Algorithm 

Converter 

Type 

Key Contributions 

[52] Saha et al., 2023 PPO Boost Demonstrated that PPO-based control outperforms 

traditional methods in terms of settling time and 

stability in DC-DC boost converters. 

[53] Cui et al., 2020 DQN Buck Proposed a DRL-based intelligent control strategy 

for buck converters, enhancing voltage stability 

under varying loads. 

[54] Liu et al., 2020 DQN & DDPG Buck-Boost Developed DRL-based MPPT algorithms (DQN and 

DDPG) for PV systems under partial shading, 

outperforming traditional methods. 

[55] Wongsathan, 2024 ANN Buck-Boost Integrated a neural network-based MPPT with ant 

colony optimization-tuned PI controller, achieving 

improved energy efficiency. 

 

3. Methodology  
This research, titled Comparison of PPO-DRL and A2C-DRL Algorithms for MPPT in Photovoltaic Systems via Buck-

Boost Converter is structured into three main stages of methodology, detailed as follows: Preparation of Solar Panel 

Parameters, Calculation of Buck-Boost Converter Parameters and Simulation of MPPT Algorithms. 

 

3.1. Preparation of Solar Panel Parameters 

In this step, the key electrical parameters of the PV panel are identified and prepared. These parameters include open-

circuit voltage, short-circuit current, maximum power point voltage, and current under standard test conditions. Accurate 

parameterization is essential for developing a reliable PV system model, which serves as the foundation for subsequent 

simulations and algorithm evaluations. Table 3 shows parameters of the PV module in this case study. 
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Table 3. 

PV module Parameters. 

Parameters (at STC) Values 

Maximum Power (Pmax) 340 W 

Maximum Voltage at Pmax (Vmp) 38.5 V 

Maximum Current at Pmax (Imp) 8.33 A 

Open-Circuit Voltage (Voc) 47.2 V 

Short-Circuit Current (Isc) 9.40 A 

Temp. Coefficiency of Voc (%/deg.oC or oK) -0.38 

Temp. Coefficiency of Isc (%/deg.oC or oK) 0.065 

 

3.2. Calculation of Buck-Boost Converter Parameters 

This stage involves determining the electrical characteristics of the Buck-Boost converter, which functions as the power 

electronic interface between the PV panel and the load. Important parameters such as duty cycle range, inductor and capacitor 

values, and switching frequency are calculated based on the operational requirements of the PV system. Proper design of the 

converter ensures efficient energy conversion across varying environmental conditions. The various circuit parameters were 

determined according to Equations 3 through 6, which describe the fundamental relationships governing the operation of the 

system [56]. Parameters of the Buck-Boost converter are shown in Table 4. 

 

3.2.1. Inductor 

Use the buck-boost inductor sizing formula (worst-case at max duty cycle): 

 

 = in

s

V D
L

L f




                                                                        (3) 

2. Output Capacitor 

 = out

out s

I D
C

V f




                                                       (4) 

3. Load Resistance (Max) 
2 

 = 
 

V
R

P
                                                             (5) 

4. Duty Cycle Range 

 
 = 

+ 

out

out in

V
D

V V
                                                     (6) 

 
Table 4. 

Parameters of the Buck-Boots converter. 

Parameters Values 

Capacitor C1 1000 µF 

Inductor L1, 330 µH 

Forward Voltage of Diode (Vf) 0.5-0.7 V(Schottky) 

Load Resistance maximum 4.62 Ω 

Duty cycle 0.1-0.8 

 

3.3. Simulation of MPPT Algorithms  

In the final stage, the Proximal Policy Optimization Deep Reinforcement Learning (PPO-DRL) and Advantage Actor-Critic 

Deep Reinforcement Learning (A2C-DRL) algorithms are implemented and simulated. The objective is to track the 

maximum power point (MPP) of the PV system under dynamic irradiance and temperature conditions. The performance of 

each algorithm is assessed based on criteria such as tracking speed, stability, and overall energy harvesting efficiency.  

The fundamental equations representing the operation of the Advantage Actor-Critic (A2C) algorithm for Maximum Power 

Point Tracking (MPPT) in photovoltaic (PV) systems are presented in Equations 7-9. These equations illustrate the policy 

gradient update, advantage estimation, and value function loss used by the actor and critic networks during the training 

process [57-59]. 

Policy Gradient Update: 
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( )( ) = logt t t tJ a s A        
                                                       (7) 

Advantage Estimation: 

=  - ( )t tA Rt V s
                                                                       (8) 

Critic Loss: 

( )
2

=  - ( )critic tL Rt V s
                                               (9) 

When  𝜋𝜃is Policy with parameters 𝜃 

𝑅𝑡 is Return at timestep t 

𝐴𝑡 is the Advantage function 

In addition, the working principles of the Proximal Policy Optimization (PPO) algorithm applied to PV MPPT are 

formulated in Equations 10-13. These equations define the clipped surrogate objective function, the policy probability ratio, 

the value function loss, and the entropy bonus, which collectively enhance training stability and ensure robust policy updates 

under varying irradiance and temperature conditions [57-59]. 

 Clipped Surrogate Objective: 

( ) ( ) ( )( )( ) = min , clip ,1 - ,1 +CLIP
t t t t tL r A r A      

           (10) 

Probability Ratio: 

( )
( )
( )old

 = 
t t

t

t t

a s
r

a s









                                           (11) 

Value Function Loss: 

( )
2

= ( ) - VF
t tL V s R

                                        (12) 

Entropy Bonus(optional) 

( )( )= - Entropyentropy
t tL s   
 

                                  (13) 

 

When  ∈  is Clipping threshold (typically 0.1-0.3) 

𝛽 is the Entropy coefficient to encourage exploration 

A flowchart of the A2C algorithm MPPT Tracking Process is shown in Figure 9, and the Flowchart PPO algorithm 

Tracking Process is shown in Figure 10. 

 

 
Figure 9. 

Flowchart of the A2C algorithm MPPT Tracking Process. 
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Figure 10. 
Flowchart the PPO algorithm Tracking Process. 

 

4. Results and Discussion 
4.1. Comparison of the Mean Reward Per Episode Between the PPO and A2C Algorithms 

To evaluate the effectiveness of DRL algorithms for MPPT in PV systems, this study implemented and trained two state-

of-the-art DRL algorithms: PPO and A2C. Both algorithms were applied to control a Buck-Boost converter to maximize the 

power output of the PV system under dynamic environmental conditions. The performance of each algorithm was assessed 

based on the mean reward obtained during training episodes, which reflects the agent's ability to accurately and efficiently 

track the maximum power point. The experimental results are illustrated in Figure 11, which presents the smoothed mean 

reward per episode for both PPO and A2C. The following section presents a comparative analysis of the training results. 
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Figure 11. 
Mean Reward per Episode of the PPO and A2C. 

 

Figure 11 presents the comparison of the mean reward per episode between the PPO and A2C algorithms, applied to the 

MPPT task in a photovoltaic system using a Buck-Boost converter. The x-axis represents the number of training episodes, 

while the y-axis shows the smoothed mean reward, which reflects the performance of the agent in each episode. The blue 

curve corresponds to the PPO algorithm, and the orange curve represents the A2C algorithm. From the graph, it is evident 

that the PPO algorithm achieves faster convergence and higher performance compared to A2C. Specifically, PPO’s reward 

increases rapidly within the first 100 episodes and stabilizes at a higher value of around 1.8. In contrast, A2C demonstrates 

slower learning progress and reaches a lower average reward of around 1.2. These results indicate that PPO performs better 

in identifying and tracking the maximum power point, making it more suitable for MPPT control in photovoltaic systems 

under the given simulation conditions. 

 

4.2. Performance Comparison of PPO and A2C Algorithms under Varying Irradiance and Temperature Conditions 

To further evaluate the performance and control behavior of the PPO and A2C algorithms for MPPT in PV systems, 

heatmaps of duty cycle outputs were generated under varying temperature and irradiance conditions. The goal was to observe 

how each algorithm adjusts the duty cycle of the buck-boost converter to maintain optimal power extraction in response to 

environmental changes. The figures below illustrate the variation in duty cycle values as predicted by each algorithm across 

different irradiance levels (200-1,000 W/m²) and PV cell temperatures (25-75°C). 

The heatmap of the PPO algorithm demonstrates consistent behavior, where the duty cycle remains fixed at 

approximately 0.80 across all temperature and irradiance conditions. This indicates that PPO has learned a stable policy that 

generalizes well to different environmental states but may lack adaptability in fine-tuning the response under varying inputs. 

In contrast, the heatmap of the A2C algorithm exhibits a more dynamic adjustment of the duty cycle. At lower irradiance and 

temperature values, the duty cycle varies significantly, increasing gradually as irradiance and temperature rise. The duty cycle 

values reach 0.80 under high irradiance and temperature conditions, showing A2C’s sensitivity and responsiveness to 

environmental variations. Figure 12 shows a heatmap of the duty cycle generated by the A2C algorithm under varying 

irradiance and temperature conditions, and Figure 13 shows a heatmap of the duty cycle generated by the PPO algorithm 

under varying irradiance and temperature conditions.  
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Figure 12. 

Heatmap of Duty Cycle Generated by A2C algorithm under Varying Irradiance and Temperature Conditions. 

 

 
Figure 13. 

Heatmap of Duty Cycle Generated by PPO algorithm under Varying Irradiance and Temperature Conditions. 

 

These results suggest that while PPO provides a more stable and possibly conservative control policy, A2C demonstrates 

better adaptability in response to fluctuating environmental conditions, though it may be more complex to stabilize. 

Therefore, the choice between the two algorithms should consider the trade-off between stability and adaptability depending 

on the application requirements. 

To comprehensively assess the control behavior and energy harvesting performance of PPO-DRL and A2C-DRL 

algorithms for MPPT in photovoltaic systems via a Buck-Boost converter, this study analyzes the variation of duty cycles 

and corresponding power output under diverse environmental conditions. Heatmaps were generated to visualize the output 

of both algorithms with respect to changes in irradiance (200–1,000 W/m²) and temperature (25-75°C). The objective is to 

evaluate how effectively each algorithm responds to external factors and maximizes power output under dynamic PV system 

conditions. 

The heatmaps for duty cycle reveal distinct differences in control strategy. PPO outputs a constant duty cycle of 

approximately 0.80 across all irradiance and temperature levels, indicating that it has learned a fixed policy that generalizes 

well but lacks responsiveness to environmental variation. Conversely, A2C adjusts the duty cycle dynamically, with values 

ranging from 0.19 to 0.80 depending on irradiance and temperature. This shows that A2C is more reactive and adapts its 

control to optimize for changing conditions. 

When comparing power output, the PPO algorithm consistently produces high power, especially under high irradiance 

levels, achieving values up to 340 W. Its output decreases steadily with rising temperature and lower irradiance, yet it remains 
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relatively stable and reliable. In contrast, the A2C algorithm exhibits weaker performance at low irradiance and low 

temperature (e.g., only 0.74 W at 200 W/m² and 25°C), but it gradually improves and matches PPO performance under higher 

irradiance. At full sunlight (1,000 W/m²), both algorithms reach the maximum rated output of 340 W. The heatmap of power 

output generated by the A2C and PPO algorithms under varying irradiance and temperature conditions is shown in Figures 

14 and Figure 15. 

 

 
Figure 14. 
Heatmap of Power Output Generated by A2C algorithm under Varying Irradiance and Temperature Conditions. 

 

 
Figure 15. 

Heatmap of Power Output Generated by PPO algorithm under Varying Irradiance and Temperature Conditions. 

 

In summary, PPO shows superior stability and maintains high power output across a wide range of conditions with a 

fixed control approach. A2C, while initially less efficient under weak conditions, demonstrates a stronger adaptive capacity. 

Therefore, PPO may be preferred for robust, consistent environments, whereas A2C offers greater flexibility for rapidly 

changing operating conditions. 

 

4.3. Comparison of Power, Voltage, and Current Output between PPO and A2C Algorithms under Test Conditions 



 
 

               International Journal of Innovative Research and Scientific Studies, 8(3) 2025, pages: 2438-2453
 

2451 

This experiment compares the performance of the PPO and A2C algorithms in MPPT by analyzing power, voltage, and 

current outputs across 28 test cases. The black line represents the ideal output, while the red (PPO) and blue (A2C) lines 

show the actual outputs. 

From the power output graph (Figure 16a), it is evident that the PPO algorithm closely follows the reference (best) values 

in most test cases, particularly in mid to high irradiance scenarios. A2C, while improving gradually, tends to lag behind PPO 

in the early test cases but converges better as irradiance increases. 

In the voltage output graph (Figure 16b), PPO maintains a relatively consistent voltage profile close to the reference, 

whereas A2C shows significant underestimation in lower test cases and slightly overshoots in later ones. This indicates that 

PPO maintains more stable control over voltage adjustment through the buck-boost converter. 

Regarding the current output (Figure 16c), both algorithms produce similar trends, with PPO slightly outperforming A2C 

in certain regions. However, the current output remains more stable and accurate under PPO, aligning better with the reference 

current at higher irradiance. 

In summary, PPO demonstrates more accurate and stable MPPT performance across voltage, current, and power 

dimensions compared to A2C. The results suggest that PPO is more effective in matching the system's optimal operating 

point, particularly under dynamic and varied conditions. Figure 16 shows the comparison of power, voltage, and current 

output between PPO and A2C algorithms under test conditions. 

 

 
Figure 16. 
Comparison of Power, Voltage, and Current Output between PPO and A2C Algorithms under Test Conditions. 

 

5. Conclusion 
This study aimed to compare the performance of two prominent DRL algorithms: PPO and A2C in the application of 

MPPT for PV systems using a Buck-Boost converter. Through simulation-based experiments under various irradiance (200–

1,000 W/m²) and temperature (25-75°C) conditions, both algorithms were evaluated based on their control behavior (duty 

cycle) and energy extraction performance (power output, voltage, and current). The results show that the PPO algorithm 

consistently achieved a high and stable duty cycle of approximately 0.80, regardless of environmental conditions. This 

indicates that PPO successfully learned a generalized policy for power maximization, offering robustness and ease of 

implementation. Its power output remained close to the theoretical maximum (340 W) in most cases, and its voltage and 

current outputs aligned well with the expected optimal values. This reflects PPO’s capability to maintain system stability and 

efficiency, particularly under changing environmental conditions. In contrast, the A2C algorithm demonstrated more dynamic 

behavior, adjusting the duty cycle in response to irradiance and temperature variations. While this adaptability is beneficial 

in principle, A2C struggled to produce high power output under low irradiance conditions. Its voltage output showed 

significant deviations from the optimal reference, especially in early test cases. However, under higher irradiance levels, 

A2C’s performance gradually improved and matched PPO’s in later test scenarios. When comparing real-time output across 
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28 test cases, PPO outperformed A2C in terms of power accuracy, voltage regulation, and current stability. While A2C 

displayed promising adaptability, it requires more fine-tuning and training stability to achieve results comparable to PPO. In 

conclusion, the PPO algorithm is better suited for MPPT control in PV systems that operate under dynamic or uncertain 

environmental conditions. It provides a strong balance between learning efficiency, stability, and energy extraction 

performance. A2C remains a viable option for scenarios where adaptive behavior is more critical, but it may require additional 

training optimization. Future work could explore hybrid approaches or fine-tuned reward structures to enhance A2C’s 

practical performance. 
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