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Abstract

The objective of this study is to apply machine learning algorithms to automatically detect accidents in heating networks.
The study uses the Orange data mining environment, which allows for a clear and intuitive implementation of the data analysis
stages. The data set includes parameters characterizing the state of the system, such as temperature, pressure, coolant flow
rate, and time. Random forests, logistic regression, and k-nearest neighbors (k-NN) methods for anomaly detection were used
to classify accidents. The models were trained and tested on a demo dataset. The results showed that the proposed methods
provide high classification accuracy, and the error matrices and ROC curves confirm the effectiveness of the models. The
results demonstrate the potential of machine learning to improve the reliability of heat supply systems. The practical
significance of this study lies in the possibility of integrating such systems into the existing monitoring infrastructure, which
will allow for quick detection of faults, accidents, and reduction of maintenance costs.
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1. Introduction

Modern heat supply systems represent highly complex, large-scale engineering infrastructures that require continuous
supervision, regular maintenance, and prompt fault detection to ensure their stable operation, energy efficiency, and
longevity. Given the aging infrastructure in many regions and the growing demands for energy efficiency and sustainability,
there is an urgent need for intelligent systems capable of detecting malfunctions and anomalies at early stages. One of the
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most promising directions in this regard is the application of advanced machine learning algorithms for the automated
identification and classification of emergency conditions in district heating networks [1-4].

The problem of detecting accidents and diagnosing faults in engineering systems has a long history. Classical approaches
developed in the 1980s and 1990s were based on physical models, analytical methods, and expert systems. These traditional
methods typically required complete knowledge of system parameters, boundary conditions, and internal processes, making
them difficult to scale and maintain. With the development of digital data collection technologies, Internet of Things (1oT)
sensors, and increased computing power, data-driven methods have become increasingly widespread [5-10].

Modern studies by Jordan and Mitchell [11] and Zhao [12] have demonstrated that machine learning methods, such as
Decision Trees, Random Forests, Support Vector Machines (SVM), and Artificial Neural Networks (ANN), exhibit high
accuracy and adaptability for fault detection in complex systems. More recent research Wang [13] and Petrova and lvanov
[14] confirms that these models are capable of detecting anomalies in real time and predicting the progression of failures.
However, many of these studies are conducted using domain-specific or simulated datasets that do not fully reflect the
operational conditions of district heating systems. Moreover, they often overlook challenges such as data incompleteness,
class imbalance, and the practical interpretability of model outputs. These limitations highlight the need for visual and user-
friendly platforms like Orange, which enable transparent modeling and facilitate the integration of expert knowledge into the
machine learning workflow.

Particularly noteworthy are visual analytics environments such as the Orange Data Mining platform [15], which allows
for the creation of machine learning workflows through an intuitive graphical interface. Due to its accessibility, algorithm
diversity, and real-time visualization capabilities, Orange is increasingly being used to prototype intelligent diagnostic tools.

This study aims to develop and demonstrate a methodology for accident detection in heating networks based on the
Orange platform, integrating modern machine learning approaches with practical visualization techniques.

2. Materials and Methods
2.1. Description of Data Used
The Orange visual platform provides a rich set of tools for data preparation, model building, visualization and evaluation
of results [16]. The study used a synthetic dataset modeled for the tasks of detecting accidents in heating networks. The data
is presented in CSV format and contains the following parameters [17]:
1. Temperature - temperature of the coolant in the pipes (in degrees Celsius);
2. Pressure - pressure in the pipes (in bars);
3. Flow Rate - coolant flow rate (in conventional units);
4 Hour - hour of the day when the measurement was made (0-23);
5. Location - location of data collection (designated by letters A, B, C);
6. Status - target variable:
a) 0 - Normal operation;
b) 1 - An accident was recorded.
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1 Data Table - Orange

Status Location Temperature Pressure FlowRate Hour
1 _ C 74.9671 — 3.29231 105.267 - 3
2 _ B 68.6174 3.78968 108412 9
3 _ B 76.4769 3.82864 116.246 __ 4
4 _C 85.2303 3.59886 115.807 — ]
s B c 67.6585 3.91936 __ 79.335 23
& _ B 67.6586 4.20203 — 85.9326 2
7 _C 85.7921 4.24309 107.726 16
s O A 77.6743 4.08729 107.707 2
5 _ A 65.3053 4.12878 107.726 15
wE@ e 75.4256 3.96278 157.791 _ 3
1 [ & 65.3658 3.04061 108.563 17
12 [ 65.3427 3.98674 117.033 16
1z A A 72.4196 4.03012 11431 3
1+ [ 50.8672 5.23162 109.771 23
1s O A _ 52.7508 3.90382 95.271 22
1« O < 64.3771 415077 111385 _ 4
17 _ A — 59.8717 3.98264 ___ £88.4076 11
1= O © 73.1425 3.41566 96.4477 16
v A 60.9198 4.57141 92.7195 22
20 _ B — 55.877 4.37597 101.228 12
21 [ A £4.6565 4.39552 134.72 22
22 [ 67.7422 ____ 3.54531 71.991 2
< 23 _A 70.6753 4.7014 110.294 g
2« O A _ 55.7525 __ 3.29907 _ 75.8093 16
2s O A 64.5562 429343 92.921 16
2 O B 71.1092 5.09523 116.334 19
27 O A L s8.4%01 _ 3.50473 100.964 15
28 _ B 73.757 3.71685 — 283.8338 21
29 _ B 63.9936 4.04983 — 89.2704 12
30 _ A 67.0831 3.74826 110.194 18
Figure 1.

Heat network anomaly data.

2.2. Dataset Characteristics

1. Data volume: 30 lines (each line is one measurement).

2. The set is balanced: the number of normal and emergency cases is comparable.

3. The data simulate real scenarios of urban heating networks' operation.
Purpose of data use: The machine learning model was trained to identify patterns between the parameters of the heating
network state and emergency events [18].

2.3. Data Preprocessing
To ensure the quality of the input data, a series of steps were performed to clean and normalize it:
1. Removal of gaps: missing values were replaced by the average value for the corresponding feature [19-21]:

1 n
n 4

where Xi-is the missing value to replace in the ! - th record, Xi. values of this attribute in other records, " is the number
of non-empty (non-zero) values for this feature.

When a data table (e.g., temperatures or pressure in a heating network) contains missing values, they can be replaced
with the average value for the column. This is a classic imputation method used in Orange via the Impute widget:
The program finds all non-empty values of a feature (e.g., temperature);

e Calculates their average using the formula above;
e  Substitutes this value for the missing cells.
2. Normalization: Numeric features were normalized to the range [0,1] using Min-Max normalization [22-24]:
X = Xpi
Xnorm = —— @)
Xmax ~ Xpin

where x - initial value of the feature (for example, temperature, pressure, etc.), X, - minimum value of the feature in the
sample, X, - is the maximum value of a feature in a sample,

X normalized value.

norm”~
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3. Feature selection: only parameters that directly affect the probability of accidents were used to train the models:
temperature, pressure, flow rate, and hours.
4. Encoding of categorical features: One-Hot Encoding was applied to the binary features of the accident.

2.4. Analytical Tools and Algorithms

In this study, we used the visual data analysis environment Orange Data Mining, version 3.34. This platform allows data
processing, analysis, and modeling using visual workflows without the need to write code manually. Orange is based on
Python and provides a rich set of tools for machine learning and visualization.

Table 1.
Main widgets used.
Widget Purpose
File Loading data from a CSV file
Select Columns Selecting the necessary features (attributes) for analysis and eliminating unnecessary
ones
Impute Automatic handling of missing values in a dataset
Continue / Normalize Transformation of categorical data into numerical, normalization of numerical features
Preprocess Complex data pre-processing (includes imputation, normalization, etc.)
Box Plot, Distributions, Scatter Plot Visual analysis of data distribution, relationships and outliers
Tree, Random Forest, Logistic Regression | Building classification models
Test & Score Accuracy evaluation and performance comparison of different machine learning
algorithms. Automatically splits the data:
—  70% - used for model training.
30% - for testing and performance evaluation.
Confusion Matrix Analysis of classification accuracy using a confusion matrix

Three popular machine learning algorithms were chosen in the studies: Random Forest, Logistic Regression, and k-
Nearest Neighbors (k-NN). These formulas are often used in academic publications to explain how the algorithms work.
Random Forest. The algorithm builds a set of decision trees and applies voting [25]:

y =mode(Ty (x), T,(x).....Tx (x)) @)
where, Tx (x) prediction of the k-th tree, K - total number of trees, Y/ - final solution (the most common among trees).
Logistic Regression. The goal is to predict the probability of an object belonging to a class [26].

1
Ply=1x)= 1+ o ot Poxe Boxe sy X

where, X = (xl, Xy ,...xn)— input features, Sy, S, .... 5, - model parameters, P(y :ij)— probability of belonging to class 1.
k-Nearest Neighbors (k-NN). Forecast based on the nearest k points [27]:

y = majority _vote{yi li e arg min (]|X -X ||)} (5)
X;- neighboring points from the training set, ||X —Xi||— Euclidean distance between points, k - is the number of nearest

neighbors, 3_/ - predicted class.

3. Results

During the experiments, three machine learning algorithms - Random Forest, Logistic Regression, and k-Nearest
Neighbors (k-NN) - were trained and tested on a dataset prepared in Orange. The data was preprocessed: missing values were
replaced with mean values, numerical features were normalized, categorical data were encoded, and only relevant features
were selected for building models. The following metrics were used to evaluate the effectiveness: Accuracy, AUC (area
under the ROC curve), and F1 score. The data was divided into training and testing sets in a 70/30 ratio, which ensured a
reliable test of the generalization ability of the models.
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Figure 2.
Workflow of Machine Learning Model Development and Evaluation in Orange.
Table 2.
Comparative table of results.
Model Accuracy AUC F1-score
Random Forest 0.93 0.93 0.90
Logistic Regression 0.87 0.91 0.89
k-NN (k=5) 0.84 0.88 0.82

Random Forest performed best across all metrics, demonstrating its robustness to overfitting and its ability to capture
complex patterns. Logistic regression showed good interpretability and performance, especially with a small number of
features. k-NN demonstrated the least accuracy but remains useful for well-normalized data and simple classification tasks.

The models were visualized using Confusion Matrix, ROC curves, and Box Plot, which reflect the distribution of
errors and the quality of classification by class.

0 1 Z

0 28 0 28

2 1 2 0 2
Cil

30

Figure 3.
Confusion Matrix.

To assess the accuracy of the constructed machine learning model, a confusion matrix was used, which reflects the

relationship between the actual and predicted class values. Table 3 shows the results of classifying the heating network states
based on the input parameters (temperature, pressure, flow rate, etc.).
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Results of classification of heating network states based on input parameters.

Predicted: 0 Predicted: 1 Total (Fact)
Fact: 0 28 (True Negative) 0 (False Positive) 28
Fact: 1 2 (False Negative) 0 (True Positive) 2
Total 30 0 30

The matrix analysis shows that the model correctly classified 28 normal (non-emergency) conditions (True Negative),
without false positives (False Positive = 0). However, of the two emergency cases (fact = 1), both were erroneously classified
as “normal” (False Negative = 2), which indicates the absence of correctly predicted emergency conditions (True Positive =
0). This situation indicates a bias of the model towards the main class (normal condition), which may be due to an imbalance
in the training data set, where positive (emergency) cases are represented in the minority. The model demonstrates high
specificity but low sensitivity (recall) to emergency situations.

~

o

L 11
L3

Figure 4.
Distribution of temperature values by accident classes.
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During the analysis of the parameter distribution, histograms were constructed to visualize the relationship between
temperature and emergency situations. Figure 4 shows the distribution of temperature values in the normalized range [0, 1]
divided by the “Status” label (0 - normal operation, 1 - emergency). The analysis shows that most emergency cases are
concentrated in the temperature range from 0.6 to 0.7, while normal observations are distributed more evenly across the entire
range. This may indicate a critical temperature value, upon reaching which the probability of emergency situations increases
significantly. It is advisable to use this feature as one of the key ones when constructing machine learning models.

0

L1}
L

Figure 5.
Distribution of pressure by system states (normal and emergency).

T S S T T S S S S S S S S S S SRR | L L L I
0 01 0.2 03 04 0.5 06 07 08 03 1

Pressure

2712

0



International Journal of Innovative Research and Scientific Studies, 8(3) 2025, pages: 2707-2716

The histogram shows that emergency cases are observed at certain pressure levels, which may indicate its influence
on the occurrence of failures. Analysis of the distribution of the Pressure feature showed differences between normal and
emergency states of the system. Figure 5 shows a histogram visualizing pressure values divided by the state label. Most
observations with normal conditions (marked in blue) are distributed evenly over the range of pressure values. At the same
time, emergency states (marked in red) are localized in intervals around 0.5 and 0.8, which indicates a possible relationship
between increased or unstable pressure and the probability of system failure. This result confirms the hypothesis that pressure
can be a significant factor in building models for the early detection of accidents. A machine learning model can effectively
use this distribution for classification and prediction.

| I I

I L L L L L L
0 0.1 02 0.3 0.4 0.5 0.6 07 08 0.8 10

FlonRate
Figure 6.
Distribution of coolant flow rate (FlowRate) depending on the system state (normal - 0, emergency - 1)

The analysis of the distribution of the FlowRate feature showed that emergency states (label 1) in the sample are
observed mainly in the range of normalized flow values from 0.4 to 0.5. At the same time, the bulk of normal modes (label
0) are distributed more evenly across the scale of values, with peaks in the region of 0.2 and 0.4. This indicates a possible
correlation between certain flow levels and the probability of an emergency situation. This feature can be useful in
constructing a classification model.

L
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0.1 02 0.3
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Figure 7.
Distribution of time of day (Hour) depending on the state of the system (normal - 0, emergency - 1)

The distribution of the Hour feature showed that emergency conditions are observed predominantly in the first third of the day
(normalized values 0.1 - 0.3), while normal modes are distributed more evenly over the entire time interval, with peaks at the
beginning, middle, and end of the day. This may indicate a relationship between the time of day and the probability of an
accident, which makes this feature potentially useful for training a classification model.

3.1. Feature Importance Analysis

The figures show the distribution histograms of four features (FlowRate, Hour, Pressure, Temperature), built in Orange
using the Distributions widget. The distributions are shown with a division by the value of the target variable Status (0 - normal
state, 1 - emergency).
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Conditional assessment of feature importance based on visual analysis of distributions.

Sign Significance Observed features
Pressure Tall Significant difference in distributions between abnormal and normal observations.
FlowRate Average Accidents are more common at average flow rates, which is reflected in narrow zones.
Hour Average Accidents are concentrated in certain time intervals of the day.
Temperature | Low The distributions are almost identical, the feature weakly separates the classes.
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Figure 8.

Evaluation of sensitivity of models to emergency events based on ROC analysis.

To assess the classification quality, ROC analysis was performed for the Logistic Regression, Random Forest, and k-
nearest neighbors (kNN) models with the emergency state selected as the target class (target = 1). The results showed that
logistic regression demonstrated the best classification quality with an area under the curve (AUC) of about 0.9, indicating
high sensitivity of the model in detecting emergency situations. Random Forest showed moderate quality with an AUC of
about 0.75. The k-nearest neighbors method demonstrated the worst result; its curve almost coincides with the random
prediction line, indicating a weak ability to distinguish between emergency and normal states.
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Figure 9.
Visualization of the relationship between temperature and pressure parameters.

Figure 9 shows a scatterplot plotted based on a sample containing temperature and pressure values. The abscissa (X) axis
shows normalized temperature values, and the ordinate (YY) axis shows pressure values. The color differentiation of the dots
reflects the binary value of the target variable Status: blue dots indicate a normal state (value 0), while red dots indicate the
presence of an anomaly, such as a leak (value 1). As can be seen from the graph, most of the observations are normal.
However, it can be noted that anomalies (red dots) are localized in the area of higher temperature and pressure values,
which may indicate a potential relationship between extreme environmental parameters and the risk of failure. This
confirms the possibility of using these parameters as predictors in problems of classification or prediction of technical
malfunctions.

4. Conclusion

In this paper, we considered the problem of automatic detection of accidents in heating networks using the Orange visual
programming environment. The main attention was paid to the construction and evaluation of machine learning models, such
as logistic regression, random forest, and k-nearest neighbors (k-NN), as well as to the analysis of the significance of features,
data visualization, and assessment of the accuracy of predictions. The analysis showed that among the studied parameters,
pressure, temperature, and flow have the greatest influence on accident prediction. These findings are confirmed by both
graphical analysis and model results. Particular attention was paid to assessing the sensitivity of the algorithms to different
values of the target variable, which made it possible to take into account the specificity of unbalanced classes and the
criticality of detecting positive (emergency) cases. The effectiveness of the models was assessed using the accuracy, AUC,
and F1-score metrics, as well as visualization of ROC curves and error matrices. For example, the random forest model
correctly classified 28 out of 30 observations, achieving an accuracy of 93%, but revealed difficulties in detecting rare
emergency events, which is typical for problems with unbalanced data. Visualization of the relationships between features
allowed us to identify potential indicators of accidents that can be used in further research and in the construction of intelligent
diagnostic systems. The authors sought to demonstrate the potential of using machine learning methods for early prediction
of emergency situations and increasing the reliability of heating networks. The results obtained confirm the feasibility of
using intelligent algorithms and visual analytics in engineering systems. In the future, it is planned to expand the sample size,
apply class balancing methods, test more complex algorithms, including ensemble models and neural networks, and integrate
predictive analytics approaches to improve the accuracy and automation of technical monitoring.
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