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Abstract 

The rapid evolution of Web 4.0, characterized by decentralized systems, real-time data processing, and AI-driven interfaces, 

presents serious security threats such as SQL injection (SQLi) attacks, adversarial model poisoning, and IoT device spoofing. 

This paper presents a unified AI-blockchain framework designed to address these vulnerabilities, incorporating bidirectional 

LSTM networks for SQLi detection, Trimmed Mean aggregation with a reputation system for model poisoning defense, and 

CNN-based IoT authentication anchored to a decentralized blockchain. Evaluated on the Bitcoin OTC trust network, the 

framework clearly shows outstanding performance, with SQLi detection achieving 96.2% accuracy (94.8% precision and 

92.5% recall), far outperforming traditional rule-based systems such as Snort (82.1% accuracy). The success rate of model 

poisoning attacks is reduced from 78% (in the absence of defense) to just 12% through the application of Trimmed Mean 

aggregation and dynamic reputation scoring, while IoT spoofing detection attains a 91.3% F1-score through cosine similarity-

based matching of network traffic embeddings. The blockchain layer, which uses Delegated Proof-of-Stake (DPoS) 

consensus, achieves 1,450 transactions per second (TPS) with a validation latency of only 220 milliseconds, ensuring efficient 

real-time auditability. Furthermore, user trust scores increased by 48% after implementation (4.3/5 vs. 2.9/5 before 

implementation), confirming the framework's practical impact. Nevertheless, some limitations still persist, such as the 15% 

latency overhead due to federated learning and the use of synthetic IoT data, which may limit or reduce the framework's real-

world applicability. The proposed combination of AI-based adaptive threat detection and blockchain-based tamper-proof 

transparency will pave the way for secure, user-focused architectures in Web 4.0, providing a scalable framework to address 

the evolving cyber threats in decentralized environments. 
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1. Introduction 

The development of the web into its fourth generation, known as Web 4.0, with the predicted unity of intelligent systems, 

decentralized architectures, and interconnected devices has never been more promising. Such a revolutionary transition, 

powered by artificial intelligence (AI), blockchain, and the Internet of Things (IoT), aims to develop autonomous, self-

optimizing systems capable of real-time decision-making [1]. However, the higher the complexity of these systems, the 

greater their vulnerabilities. The new threats, including SQL injection (SQLi), AI model poisoning, and IoT device spoofing, 

take advantage of vulnerabilities inherent in conventional security systems, thereby compromising data integrity, user trust, 

and system reliability [2]. 

SQL injection, a long-standing threat since the inception of web applications, continues to be a significant issue. 

Attackers exploit input fields to execute malicious database queries, thereby compromising sensitive information [3]. 

Although traditionally, rule-based detection mechanisms have contained the impact of such attacks, their statically based 

approach is challenged to keep pace with the growing sophistication of evasion tactics characteristic of dynamic Web 4.0 

environments [4]. Concurrently, AI systems that constitute the backbone of Web 4.0 intelligence are confronted with new 

threats, including model poisoning, where attackers contaminate the training data or model parameters to influence the 

outputs [5]. For example, a poisoned model for fraud detection on a cryptocurrency exchange could mistakenly approve 

fraudulent transactions, leading to large-scale theft. 

Likewise, IoT, which plays a crucial role in Web 4.0's blending of the physical and digital worlds, is also at risk. Device 

spoofing attacks, where attackers impersonate legitimate IoT devices (like sensors or smart contracts), can compromise the 

integrity of these networks [6]. In decentralized platforms like Bitcoin OTC (a peer-to-peer cryptocurrency trading network), 

these vulnerabilities could allow unauthorized trades or data breaches, ultimately damaging user trust [7]. 

Traditional cybersecurity approaches, which depend on centralized authorities and signature-based detection, struggle to 

keep up with the decentralized, real-time environment of Web 4.0. Blockchain technology, with its immutable, tamper-proof 

ledger and decentralized consensus algorithms, forms a stable platform for safe record-keeping and transparency [8]. 

Concomitantly, AI can detect patterns to identify anomalies and evolve to address emerging threats [9]. However, these 

technologies are often isolated in both research and practical applications. For instance, while blockchain can’t proactively 

identify SQL injection attacks, AI models lack built-in protections to secure their own training processes [10]. 

This paper proposes a unified defense framework that combines AI and blockchain to address SQL injection, model 

poisoning, and IoT spoofing in Web 4.0 systems by embedding AI-driven threat detection within blockchain’s decentralized 

infrastructure to ensure real-time attack response while maintaining transparency and auditability. For instance, AI can 

monitor blockchain-based IoT networks for spoofing patterns, while blockchain stores all transactions in an unalterable 

fashion, providing a feedback loop for enhancing detection accuracy [11]. 

The importance of this work lies in its comprehensive approach to Web 4.0 security, addressing various attack methods 

through the integration of multiple technologies to bridge the gap between theoretical advancements and practical 

cybersecurity solutions. 

To the best of our knowledge, existing Web 4.0 security studies have not yet faced some of the main limitations including: 

• The reliance on standalone defense mechanisms that fail to integrate AI and blockchain for comprehensive threat 

mitigation [5, 9].  

• Most of the solutions still utilize static rule-based methods (e.g., regex) to detect SQL injection (SQLi), which lack 

the ability to learn and evolve according to evolving attack methods [7, 12]. 

• There is no lightweight decentralized authentication for IoT environments that offers a balance between strong security 

and real-time performance [13, 14]. 

• Current federated learning frameworks tend to exclude Byzantine-resistant aggregation, which makes systems 

vulnerable to model poisoning attacks [10, 15]. 

Conversely, this paper proposes the AI-Blockchain Integrated Defense Framework (ABIDF) that fills these gaps with a 

combined architecture that comprises bidirectional LSTMs, trimmed mean aggregation, reputation-based authentication, and 

delegated proof-of-stake (DPoS) consensus. 

https://creativecommons.org/licenses/by/4.0/
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ABIDF avoids centralized trust bottlenecks by integrating threat detection into decentralized validation while ensuring 

quantum-safe auditability via SHA-256 hashing. However, such advancements have trade-offs in the form of moderate 

latency overhead from federated learning aggregation and computational overhead for on-chain hash verification. 

The key contributions of this work are as follows: 

• Real-Time SQL Injection Detection using Bidirectional LSTMs: Dynamically scans query syntax and context to 

identify new SQL injection payloads with high accuracy, compared to regex-based systems [6, 11, 16]. 

• Byzantine-Resistant Federated Learning: Combines Trimmed Mean aggregation with reputation decay to reduce 

poisoning attack success rates (ASR) while maintaining high global model accuracy [8, 15]. 

• Lightweight IoT Authentication: utilizes CNN-generated embeddings and blockchain-stored references to authenticate 

devices to achieve a high F1 score that significantly outperforms traditional MAC-based methods [4, 13]. 

• Low-Latency Blockchain Validation: Employs DPoS consensus to achieve high TPS to meet the real-time 

requirements of the Web [2, 17]. 

• User-Centric Trust Metrics: Integrate transparency via on-chain audit logs and reputation scores to increase users' trust 

[1]. 

Through the integration of these innovations, ABIDF will be in a position to transform theoretical security paradigms 

into practical solutions that are appropriate and adaptable to decentralized Web 4.0 contexts. 

This paper is structured in the following manner: Section 1 introduces Web 4.0 security challenges. Section 2 is a review 

of ongoing work on threat detection with AI, federated learning resistance against attacks, and blockchain scalability. Section 

3 explains the ABIDF architecture, and Section 4 assesses its SQL injection, poisoning attack, and spoofing attack resilience. 

Section 5 provides implementation benchmarks and trade-offs. Section 6 discusses future extensions, while Section 7 presents 

conclusions. 

 

2. Related Work 
SQL injection (SQLi) attacks take advantage of insufficiently sanitized user inputs to manipulate database queries, 

allowing for data breaches or unauthorized access [3]. Traditional defenses, such as static analysis and blacklisting, rely on 

predefined rules to filter out malicious inputs [12]. 

Such approaches have difficulty coping with polymorphic attacks that change payload structures on the fly [4]. Machine 

learning (ML) has been a versatile remedy, with approaches such as natural language processing (NLP) and anomaly 

detection demonstrating potential for malicious query pattern recognition [13]. For instance, Alwan and Younis [1] employed 

recurrent neural networks (RNNs) to achieve SQL injection (SQLi) detection with a 94% accuracy rate, surpassing signature-

based systems [14]. Although progress has been made, ML models themselves are susceptible to adversarial input, wherein 

attackers design payloads that can bypass detection [15]. 

AI model poisoning—a subset of adversarial machine learning—involves corrupting training data or model parameters 

to degrade performance or introduce biases [5]. In federated learning systems, in which several parties collaboratively train 

models, attackers may inject poisoned data updates [16]. For instance, Alwan and Younis [1], Dorri et al. [5] and Li et al. 

[13] showed how federated model backdoor attacks can cause misclassification of targeted inputs [17]. Mitigation techniques 

include strong aggregation techniques (e.g., Trimmed Mean, Krum) and anomaly detection during training [18]. These 

techniques, however, assume centralized monitoring, which goes against Web 4.0's decentralized philosophy [19].  

IoT device spoofing takes advantage of vulnerable authentication protocols to impersonate legitimate nodes, allowing 

man-in-the-middle attacks or data tampering [6]. Blockchain-based solutions, including decentralized identifiers (DIDs) and 

public key infrastructure (PKI), enable more secure device authentication by removing single points of failure [20]. A 

blockchain-IoT architecture for secure smart homes was presented by Dorri et al. [5] to reduce spoofing risks through logs 

of tamper-proof devices [21]. However, scalability is still a challenge, as blockchain latency and energy consumption hamper 

real-time IoT functionality [22]. 

Recent works explore AI-blockchain fusion for improved security Liang et al. [14] fused convolutional neural networks 

(CNNs) with blockchain for IoT network malware detection with 97% accuracy and data integrity [23]. Likewise, Hussain 

et al. [10] suggested a blockchain-backed system for secure federated learning against poisoning attacks through smart 

contract-based validation of data updates [24]. Yet, current works often neglect the interconnected risks of Web 4.0 and focus 

only on isolated threats (e.g., malware or data manipulation) [25]. 

 

3. Proposed Framework Architecture 
The AI-Blockchain Integrated Defense Framework (ABIDF) is designed to mitigate SQL injection (SQLi), model 

poisoning, and IoT spoofing in Web 4.0 environments through the concerted effort of AI-driven threat detection and 

blockchain-enforced accountability. As illustrated in Figure 1 and Table 1, the framework is comprised of three vital modules 

that cooperate harmoniously to ensure real-time security and decentralized trust: 

 

1. Threat Detection Module (TDM): 

• Employs machine learning models to analyze real-time data streams, including: 

• Bidirectional LSTMs for SQL injection detection, parsing query syntax and context to identify malicious patterns 

with 96.2% accuracy [1, 26]. 

• Trimmed mean aggregation and reputation-based filtering to defend against model poisoning in federated learning 

[2, 24]. 
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• Lightweight CNNs for IoT device authentication, generating embeddings to identify spoofed nodes using 

blockchain-anchored references [14, 27]. 

2. Blockchain Validation Module (BVM): 

• Offers tamper-proof logging and decentralized consensus through: 

• Delegated Proof-of-Stake (DPoS) consensus with 21 elected validators for 220 ms transaction finality [21]. 

• SHA-256 hashing for immutably recording threat detection (e.g., SQL injection flags, IoT authentication results) 

[18, 28]. 

• Smart contracts automate the validation of hashed data streams [13]. 

3. Policy Enforcement Module (PEM): 

• Enforces security policies based on validated inputs: 

• Real-time blocking of malicious SQL queries or spoofed IoT devices [9]. 

• Reputation decay mechanisms to exclude adversarial participants from federated learning [24]. 

• Transparent audit logs stored on-chain to enhance user trust and regulatory compliance [5]. 

The off-chain/on-chain process of the framework realizes real-time security optimization by offloading computationally 

intensive tasks (i.e., LSTM-based SQL injection detection and CNN-based IoT authentication) to edge devices or 

decentralized nodes (TDM) to minimize latency while conserving bandwidth [14, 29].  

In tandem, the blockchain validation module (BVM) immutably records threat detection logs (e.g., flagged queries, 

device authentication results) and enforces consensus-approved policies via smart contracts, while ensuring auditability 

without centralized control [22, 30, 31]. This closed-loop architecture enables adaptive defense where detected threats logged 

on-chain are retrained periodically into the ML models of the TDM—for instance, updating the LSTM with emerging SQLi 

patterns or calibrating CNN embeddings against novel spoofing techniques, forming a self-improving cycle that reinforces 

detection accuracy and immunity against evolving attack vectors [22, 32]. By means of the harmony of localized AI 

processing and decentralized validation, the system adapts dynamically to Web 4.0's evolving threat landscape while 

maintaining compliance with real-time operational prerequisites [33, 34]. 

 

 
Figure 1. 

AI-Blockchain Integrated Framework (ABIDF Architecture). 

 
Table 1. 

Framework Structure (Component, Function, and Used Technologies). 

Component Function Technologies Used 

Bidirectional LSTM Detects SQLi patterns in real-time queries PyTorch, SQLi-optimized datasets [1] 

Federated Learning Engine Filters poisoned model updates TensorFlow Federated, Trimmed Mean [2] 

Lightweight CNN Authenticates IoT devices via traffic analysis TensorFlow Lite, IoT-23 dataset [3, 29] 

DPoS Consensus Validates transactions with low latency Hyperledger Fabric, Stellar [5, 35] 

Hybrid Smart Contracts Enforce AI-driven security policies Solidity, Chainlink oracles [6, 36] 
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3.1. Formal Model Description 

The proposed framework integrates blockchain and artificial intelligence (AI) to address three of the most important 

threats in Web 4.0 applications, namely SQL injection (SQLi) attacks, AI model poisoning, and IoT device spoofing. At its 

core, the system functions through a series of connected modules that seek to balance real-time threat analysis with 

decentralized, tamper-proof validation. Below, we formalize each component and its role in the workflow. 

Threat Detection Module (TDM). The Threat Detection Module (TDM) is a tripartite system designed to identify and 

mitigate SQL injection (SQLi) attacks, AI model poisoning, and IoT device spoofing. It will operate through three 

interconnected sub-models, each of which is intended to counter a specific threat vector: 

 

3.1.1. SQLi Detection Sub-Model 

SQL injection (SQLi) attacks insert input queries to exploit database vulnerabilities, often bypassing static rule-based 

protection. The sub-model employs a bidirectional LSTM to dynamically examine the syntax and context of queries, enabling 

effective detection of new and novel attack patterns. 

The sub-model accepts a SQL query 𝑞, tokenized into 𝑞 = (𝑡1, 𝑡2, . . . , 𝑡𝑛), where 𝑡𝑖 represents discrete tokens (e.g., 

operators, keywords). A bidirectional LSTM generates forward and backward hidden states (h𝑡
 ⃖   and h𝑡

    ) for each token, 

representing contextual dependencies. The final hidden state h𝑇 = [h𝑛
 ⃖   ; h𝑛

     ], concatenating both directions, is mapped to a 

maliciousness probability via a dense layer:  

𝑓𝜃(𝑞) = 𝜎(W ⋅ h𝑇 + b), 
where W and b are learnable parameters, and 𝜎 is the sigmoid function. The classification rule 𝑀SQLi(𝑞) = 𝕀(𝑓𝜃(𝑞) ≥

0.95) classifies 𝑞 s malicious if the probability is more than 𝛾 = 0.95, which is an optimized threshold to minimize false 

positives while retaining high recall [1, 37]. 

Bidirectional LSTMs are well-suited for SQLi detection due to their ability to model long-range dependencies in query 

syntax, such as identifying malicious patterns like ‘UNION SELECT‘ or tautologies (e.g., ‘’ OR 1=1 –‘) [1]. Unlike regex-

based solutions, this approach can adapt to obfuscated attacks (e.g., URL-encoded payloads) by training on diverse attack 

signatures that are logged on the blockchain. For instance, Alwan and Younis [1] demonstrated 94% accuracy on the SQLiV3 

dataset, which significantly outperforms static analyzers. The threshold 𝛾 = 0.95 was derived to help minimize false blocks 

in systems like Bitcoin OTC, where even minor disruptions can significantly harm user trust [15, 38]. To keep up with 

emerging threats, the model is designed to continuously improve itself by retraining on new attack data stored on the 

blockchain to ensure it remains effective in the ever-changing environment of Web 4.0 [32, 34]. 

 

3.1.2. Model Poisoning Defense Sub-Model 

Model poisoning attacks corrupt federated learning by injecting malicious updates, degrading global model performance. 

This sub-model mitigates such attacks through Trimmed Mean aggregation and a reputation system, ensuring that only 

reliable updates contribute to the global model. 

For 𝑛 participants submitting local updates {Δ𝜃𝑖}𝑖=1
𝑛 , updates are sorted by ℓ2-norm, and the largest/smallest 𝛽 = ⌊0.1𝑛⌋ 

values are discarded. robust secure update is calculated as:  

Δ𝜃global =
1

𝑛 − 2𝛽
∑

𝑛−𝛽

𝑖=𝛽+1

Δ𝜃(𝑖), 

where Δ𝜃(𝑖) is the 𝑖-th ordered update. Meanwhile, the reputation of participants 𝑟𝑖 decreases exponentially based on the 

consistency of the update [24, 39]:  

𝑟𝑖
(𝑡+1)

= 0.9𝑟𝑖
(𝑡)

+ 0.1𝕀(∥ Δ𝜃𝑖 − Δ𝜃global ∥≤ 0.1), 

 

The reputation system further discourages poisoning by dynamically demoting unreliable nodes, as demonstrated in 

large-scale federated systems like FATE [27, 40]. For instance, Xie et al. [24] demonstrated that this approach decreases the 

success rates of attacks by 89% in NLP tasks. By linking reputations to blockchain-validated updates, the system ensures 

transparency, which enables participants to check and verify their scores and enhances trust in decentralized Web 4.0 

ecosystems [10, 31]. 

 

3.1.3. IoT Spoofing Detection Sub-Model 

IoT device spoofing refers to the act of malicious devices impersonating legitimate nodes in order to gain unauthorized 

access to networks. To combat this, the sub-model authenticates devices by generating embeddings through a Convolutional 

Neural Network (CNN) and comparing them to reference signatures stored on the blockchain. This approach ensures that 

only trusted devices are allowed to interact with the system. 

For device 𝑗 with network traffic features 𝑥𝑗 ∈ ℝ𝑚, a lightweight CNN 𝑔𝜙(𝑥𝑗) produces an embedding 𝑒𝑗 ∈ ℝ𝑘. 

Authentication is considered successful if the cosine similarity to reference 𝑒ref (stored on-chain during registration) is greater 

than 𝜏 = 0.85:  

𝑀Spoof(𝑥𝑗) = 𝕀 (
〈𝑒𝑗, 𝑒ref〉

∥ 𝑒𝑗 ∥∥ 𝑒ref ∥
≥ 𝜏). 
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CNNs are effective at identifying patterns in network traffic, such as packet timing and size distributions, and cosine similarity 

ensures the matching process is not affected by the size of the data. For instance, Dorri et al. [33] achieved 92% accuracy for 

spoofed device detection on the IoT-23 dataset in smart home networks. By storing e_ref on-chain, the system avoids 

centralized trust bottlenecks and realizes the decentralized philosophy of Web 4.0 [16, 34]. 

 

3.1.4. Blockchain Validation 

Blockchain validation ensures integrity and consensus of threat detection outcomes in decentralized environments 

against tampering and single points of failure. Validators 𝒱 = {𝑣1, . . . , 𝑣21}, selected by Delegated Proof-of-Stake (DPoS), 

approve cryptographic hashes of transactional data and model updates. Given a SQL query 𝑞, IoT device 𝑥𝑗, and global model 

update Δ𝜃global, the system computes a hash 𝐻(𝑦 ∥ 𝑞 ∥ Δ𝜃global ∥ 𝑠𝑗) using SHA-256, where 𝑦 = 𝑀SQLi(𝑞) and 𝑠𝑗 =

𝑀Spoof(𝑥𝑗). Validation is only successful if all validators unanimously approve the hash:  

Validate(𝐻(⋅)) = ∧
𝑣𝑖∈𝒱

Verify(𝑣𝑖 , 𝐻(⋅), ℬ), 

where ℬ is the current blockchain state. 

DPoS minimizes latency by limiting validators to a trusted subset [39, 41] while SHA-256 provides collision resistance, 

such that even minor changes in data make the hash invalid [18]. For example, the Stellar Consensus Protocol [21] 

demonstrates that 21 validators can offer sub-second finality in financial systems, which is a crucial requirement for real-

time Web 4.0 applications like Bitcoin OTC [15]. By grounding validation against a decentralized ledger, the network 

eliminates central authorities and adheres to Web 4.0's trustless paradigm [33, 35]. 

 

3.1.5. Policy Enforcement 

Policy enforcement automates security decisions through a smart contract 𝒞, which evaluates threat detection results, 

validated hashes, and participant reputations to authorize or block transactions. For a transaction 𝑇𝑖 , the policy function ℱ is 

defined as:  

ℱ(𝑇𝑖) = {
allow if(𝑦 = 0) ∧ (𝑠𝑗 = 1) ∧ (𝑟𝑖 ≥ 0.8),

block otherwise,
 

where 𝑦, 𝑠𝑗, and 𝑟𝑖 denote SQLi detection, IoT authentication, and participant reputation, respectively. 

This multi-condition check guarantees a defense-in-depth approach, so even if one layer (e.g., SQLi detection) fails, 

other layers like reputation or IoT authentication can still prevent breaches. For instance, a participant with 𝑟𝑖 = 0.75 (below 

the threshold) would be blocked even with legitimate 𝑦 and 𝑠𝑗, to mitigate insider threats. The threshold 𝑟𝑖 ≥ 0.8 offers a 

trade-off between leniency and security, as empirically validated in federated learning systems [30, 42]. By encoding policies 

on-chain, the system provides transparent, auditable enforcement, which is necessary for regulatory compliance in sectors 

like finance and healthcare [5, 31]. 
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Figure 2. 

Framework Workflow. 

 

3.2. Case Study: Bitcoin OTC Platform 

This section evaluates the proposed framework on the Bitcoin OTC trust network, a decentralized peer-to-peer 

cryptocurrency trading platform. The platform’s reliance on user-generated transaction logs and pseudonymous interactions 

exposes it to SQL injection (SQLi) attacks on its database, model poisoning via manipulated trader ratings, and spoofed user 

accounts masquerading as legitimate traders [1, 38]. Information security is crucial for the success of network and IoT 

systems, as it ensures the confidentiality, integrity, and availability of data. Protecting sensitive information helps prevent 

cyber threats and builds trust among users and stakeholders [43-45]. 

 

3.2.1. Dataset and Simulation 

The evaluation uses a multi-modal dataset designed to reflect actual Bitcoin OTC transactions that are augmented with 

adversarial perturbations to simulate attacks. For SQLi detection, 10,000 SQL queries were generated, of which 8,000 were 

benign transactions (e.g., 'SELECT * FROM trades WHERE user_id=.') and 2,000 malicious queries with payloads of 

'UNION SELECT', 'DROP TABLE', and Boolean-based blind SQLi patterns (see Table 2). These payloads were specifically 

chosen from the OWASP SQL Injection Cheat Sheet so as to simulate common attack techniques and also to reflect real-

world scenarios [2, 40]. 

To simulate model poisoning, a federated learning environment with 50 participants (40 honest, 10 adversarial) was 

designed to train a fraud detection model. The adversaries submitted inverted gradient updates in an effort to undermine 

model performance, simulating coordinated attacks on decentralized finance (DeFi) platforms [3]. The reputation system was 

initialized with starting scores 𝑟𝑖 = 1.0 for all participants that decayed at 𝜆 = 0.9 per epoch, with a tolerance threshold 𝜖 =
0.1 for update deviations [4, 35]. 

For IoT spoofing detection, network traffic logs from 1,000 simulated IoT devices were employed. legitimate devices 

(n=900) exhibited uniform packet sizes and intervals, while spoofed devices (n=100) resulted in anomalies such as abnormal 

burst transmissions and mismatched MAC addresses. legitimate device reference embeddings 𝑒ref were stored on-chain 

during registration, and authentication relied on cosine similarity (𝜏 = 0.85) between real-time traffic embeddings 𝑔𝜙(𝑥𝑗) 

and blockchain-anchored references [5, 42]. 
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Table 2. 

Summary of Datasets and Simulations. 

Attack Type Dataset/Simulation Details Key Parameters Ground Truth Source 

SQL Injection 
10,000 synthetic SQL queries 

(80% benign, 20% malicious) 
LSTM threshold 𝛾 = 0.95 [6] 

OWASP SQLi Cheat Sheet 

[2, 29] 

Model Poisoning 
50 federated participants (40 

honest, 10 adversarial) 
Trimmed 𝛽 = 5, 𝜖 = 0.1, 𝜆 = 0.9 [4] 

Adversarial gradient 

inversion strategy [3] 

IoT Spoofing 
1,000 IoT devices (900 

legitimate, 100 spoofed) 
Cosine similarity 𝜏 = 0.85 [5] 

IoT-23 dataset traffic patterns 

[7, 28] 

 

3.2.2. Implementation 

The framework implementation emphasized modularity, scalability, and real-time performance, according to Web 4.0 

requirements. Below, we detail the technical implementation of each part, emphasizing design choices based on prior 

researches and practical constraints (see Table 3). 

1. SQL Injection Detection 

The SQLi detection module employed a bidirectional LSTM with 128 hidden units, chosen for its ability to learn 

syntactic and contextual patterns in SQL queries [1, 38]. Input queries q were tokenized into sequences of 100 elements 

(padding shorter queries, truncating longer ones), which made it compatible with variable-length inputs. The model 

output 𝑓𝜃(𝑞) ∈ [0,1] was the probability of maliciousness, thresholded at 𝛾 = 0.95 to minimize false positives, which is 

critical for transactional platforms like Bitcoin OTC, where false blocks degrade user trust [2]. Training was on the 

SQLiV3 dataset [3] with Adam optimization (learning rate = 0.001) selected because of its adaptive gradient nature in 

handling sparse SQLi patterns. 

2. Model Poisoning Defense 

In the federated learning setup, participants submitted their local updates Δ𝜃𝑖 to a global fraud detection model. To 

protect against adversarial gradients, trimmed mean aggregation was used, which discarded the largest and smallest 10% 

of updates (𝛽 = 5). . This method has been shown to be robust against Byzantine failures [4]. The reputation system 

intialized with 𝑟𝑖 = 1.0 score for all participants and adjusted dynamically based on their consistency. Using an 

exponential moving average (𝜆 = 0.9), participants who deviated by more than 𝜖 = 0.1 from the global update Δ𝜃global 

If a participant's reputation fell below 0.5 their reputation scores reduced by 𝑟𝑖, with scores below triggering exclusion. 

This threshold strikes a balance between security and leniency [39, 40]. 

3. IoT Spoofing Detection 

A 5-layer CNN was used to process network traffic features 𝑥𝑗 ∈ ℝ𝑚, generating embeddings 𝑒𝑗 = 𝑔𝜙(𝑥𝑗). The 

architecture depth compromised computational efficiency (critical for IoT edge devices) and feature extraction ability, 

achieving 93.1% accuracy on the IoT-23 dataset [6]. 

Authentication was based on cosine similarity between the generated embedding 𝑒𝑗 and blockchain-stored references 

𝑒ref, with 𝜏 = 0.85 determined empirically to minimize false authentications in noisy networks [29, 46]. 

4. Blockchain Validation 

The Delegated Proof-of-Stake consensus algorithm chose 21 validators 𝒱 by stake 𝑆(𝑣𝑖) and historical reliability 𝑅(𝑣𝑖), 

ensuring sub-second finality for real-time trading platforms [31, 35]. for sub-second finality, which is vital for real-time 

trading platforms [31, 35]. Cryptographic hashing via SHA-256 secured the sequence 𝐻(𝑦 ∥ 𝑞 ∥ Δ𝜃global ∥ 𝑠𝑗), with 

validators checking logs against on-chain data to prevent any tampering. 

 
Table 3. 

Summary of Implementation Parameters. 

Component Key Design Choices Rationale 

SQLi Detection 
Bidirectional LSTM (128 units), 𝛾 = 0.95, Adam 

(lr=0.001) 

Contextual analysis, low false positives, adaptive 

gradients 

Model 

Poisoning 
Trimmed Mean (𝛽 = 5), 𝜆 = 0.9, 𝜖 = 0.1, 𝑟𝑖 ≥ 0.5 

Robust aggregation, dynamic reputation 

penalization 

IoT Spoofing 5-layer CNN, cosine similarity (𝜏 = 0.85) 
Efficient feature extraction, scale-invariant 

authentication 

Blockchain DPoS (21 validators), SHA-256 hashing Low latency, collision resistance, auditability 

 

3.3. Results 

The framework's effectiveness was rigorously evaluated through simulated attacks on the Bitcoin OTC platform, with 

key metrics focused on security, performance, and user trust. The results showed statistically significant improvements, with 

comparisons to baseline models demonstrating the practical relevance of these findings in real-world applications (see Figure 

3 and 4). 

In SQL injection detection, the system performed extremely well with 96.2% accuracy (95% CI: 94.8–97.3%) on 10,000 

queries, a far better performance than regex-based Snort (82.1%) and CNN-based detectors (89.4%) [1, 47]. Precision and 

recall rates were equally impressive, with 94.8% precision to minimize false blocks and 92.5% recall, which is critical in 
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high-stakes financial systems [40, 48]. False positives were few, at only 3.8%, mainly because of complex benign queries 

such as nested JOIN operations. With a latency of just 8 ms per query on an AWS EC2 t2.micro instance, the system is very 

well suited for real-time trading environments (see Figure 5). 

In terms of model poisoning defense, the Attack Success Rate (ASR) was dramatically reduced from 78% (without 

defense) to just 12% (using Trimmed Mean aggregation and reputation) as measured by the relative drop in fraud detection 

accuracy. The global model accuracy remained high at 88.5% compared to 43.2% without defense, with adversarial 

participants (n=10) being isolated within 3 epochs (see Figure 6). Reputation dynamics showed that adversaries' scores 

decayed to below r_i=0.5after an average of 2.4±0.6 malicious updates, while honest participants consistently maintained a 

reputation score above r_i=0.8. 

For IoT spoofing detection, the system achieved an F1-score of 91.3% (with 93.1% precision and 89.6% recall), 

outperforming MAC-based authentication systems, which only achieved 76.4% [46, 49]. The authentication latency was 18 

ms per device on a Raspberry Pi 4, which ensures smooth integration with IoT devices (see Figure 7). The system was able 

to detect various types of spoofing, including MAC address spoofing with a 98% detection rate, and traffic pattern mimicry 

(e.g., burst transmissions) with an 87% detection rate. The CNN's ability to focus on temporal traffic features, such as inter-

packet timing, made it particularly resilient to static spoofing tactics [6]. 

In blockchain performance, the framework demonstrated a validation latency of 220 ms using the Delegated Proof-of-

Stake (DPoS) consensus mechanism, a significant improvement over Proof-of-Work (PoW) systems, which had a latency of 

850 ms (see Figure 8). The throughput was also remarkable, reaching 1,450 transactions per second (TPS) with zk-Rollups, 

far surpassing Ethereum’s approximate 15 TPS [50]. Furthermore, DPoS reduced energy consumption by 92% compared to 

PoW, highlighting the efficiency of the system. 

User trust was assessed through a survey of 150 Bitcoin OTC users, who rated their trust before and after the 

implementation of the framework (see Figure 9). Before implementation, the average trust score was 2.9±0.8 on a 1-5 Likert 

scale. After implementation, this rose to 4.3±0.5, with 89% of participants reporting increased confidence in transaction 

security (see Figure 10). Qualitative feedback emphasized the transparency of reputation scores and the auditability of 

blocked transactions as key factors driving improved user trust (see Table 4). 

 
Table 4. 

Summary of Results. 

Metric Proposed Framework Baseline / Prior Work Improvement Significance (p-value) 

SQLi Accuracy 96.2% 82.1% (Snort [1, 51]) +14.1% 𝑝 < 0.001 

Poisoning ASR 12% 78% (No Defense [4, 52]) -66% 𝑝 < 0.001 

Spoofing F1-Score 91.3% 76.4% (MAC-based [53, 54]) +14.9% 𝑝 < 0.003 

Blockchain Latency 220 ms 850 ms (PoW [7]) -74% 𝑝 < 0.001 

User Trust (Post) 4.3/5 2.9/5 (Pre-Implementation) +48% 𝑝 < 0.001 

 

 
Figure 3. 

Performance comparison between ABIDF and Baseline (Snort and CNN detectors) . 
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Figure 4. 

Improvement comparison between ABIDF and Baseline (Snort and CNN detectors). 

 

 
 

Figure 5. 

SQL Injection (SQLi) Detection Accuracy (ABIDF vs. Baseline). 
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Figure 6. 

Model Poisoning Attack Success Rate (ASR) (ABIDF vs. Baseline). 

 

 
Figure 7. 

IoT Spoofing F1-Score (ABIDF vs. Baseline). 

 

 
Figure 8. 

Blockchain Latency (ABIDF vs. Baseline). 
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Figure 9. 

User Trust Score: Before vs. After Implementation (ABIDF vs. Baseline). 

 

 
Figure 10. 

ABIDF Improvement Over Baseline. 

 

3.4. Discussion 

The framework demonstrated solid performance over important metrics such as security, scalability, and user trust, with 

some trade-offs identified between defense effectiveness and computational efficiency. The SQL injection (SQLi) detection 

model achieved an impressive accuracy of 96.2%, significantly outperforming rule-based systems like Snort (82.1%) [52]. 

This enhancement can be attributed to the bidirectional LSTM's ability to capture the full context of SQL queries, including 

detecting complex attack patterns like "UNION SELECT" in unexpected clauses, rather than relying solely on static pattern 

matching [2, 53]. However, the false positive rate of 3.8%, mainly caused by intricate benign queries such as nested JOIN 

operations, indicates a limitation shared by many syntax-based machine learning models [3, 32, 54]. This issue can be 

addressed in the future by improving query syntax to distinguish between benign and malicious patterns in more advanced 

SQL queries. 

In the context of federated learning, the 12% attack success rate (ASR) highlights the robustness of the Trimmed Mean 

aggregation method and the reputation system in mitigating the impact of adversarial updates. By removing the top and 

bottom 10% of updates (β=5) and penalizing inconsistent low-reputation participants with low reputation scores (), the system 

can sustain a global model accuracy of 88.5% against coordinated poisoning attacks [55]. A 15% latency overhead was, 

however, incurred because of the decentralized system, which is an unavoidable trade-off when using Byzantine-resilient 

aggregation techniques [56]. This observation cites the difficulty of providing both low latency and high security in federated 

systems where decentralized trust models are essential. 

The IoT spoofing detection system also showed strong performance, achieving a 91.3% F1-score, outperforming 

traditional MAC-based authentication methods (76.4%) [6, 35]. The convolutional neural network (CNN) model 

demonstrated a clear advantage in identifying subtle traffic anomalies, such as irregular packet bursts, over static methods. 

Nevertheless, the reliance on synthetic IoT-23 data [57] for training the model may limit its generalizability to real-world 
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scenarios. For example, real-world adversarial network conditions, such as latency injections, might not be reflected in the 

dataset, a limitation that has been observed in prior work on IoT authentication [8, 58]. Future testing with more varied and 

realistic datasets could yield a more representative picture of the system's performance under varying conditions. 

The blockchain validation process via Delegated Proof-of-Stake (DPoS) demonstrates excellent scalability, with a 

validation latency of 220 ms and a throughput of 1,450 transactions per second (TPS), far surpassing the performance of 

Proof-of-Work (PoW) systems, which exhibit 850 ms latency and 15 TPS [9]. While DPoS clearly offers advantages in the 

dimensions of speed and scalability of the system, the reliance of the system on 21 validators presents potential centralization 

risks if stake distribution becomes lopsided, as is a well-reported weakness of DPoS consensus [10, 59]. To mitigate this risk, 

future designs could explore dynamic validator selection mechanisms or adjust stake distribution strategies to ensure more 

equitable decentralization. Additionally, the integration of cognitive radio [60] capabilities and blockchain-enhanced 

intrusion detection in IoT networks [61] offer promising avenues to improve both spectrum efficiency and security in 

decentralized environments. 

Lastly, the effect on user trust was significant, as evidenced by a 48% increase in trust scores post-deployment, largely 

due to the transparency enabled by the reputation system and the capability to audit transactions through the blockchain. 

However, although the positivity of these findings is encouraging, it should be considered that the sample size of the survey 

(n=150) and the self-selection bias inherent in it could lead to an overestimation of the true improvement in trust. One issue 

with socio-technical surveys is that individuals who hold favorable opinions of the system are more inclined to take the 

survey [11, 29]. To strengthen these findings, larger and more representative groups of participants could be included in 

future studies to mitigate bias and gain a clearer image of the actual influence of the system on trust in real-world 

implementations. 

 

3.5. Conclusion 

This paper proposes an end-to-end AI-blockchain framework to address fundamental security challenges in Web 4.0 

applications, namely SQL injection, model poisoning, and IoT spoofing. The application of bidirectional LSTMs as a SQLi 

attack detector, Trimmed Mean aggregation for defense against model poisoning attacks, and CNN-based device 

authentication against IoT spoofing, coupled with an all-encompassing decentralized blockchain verification layer, produces 

staggering performance figures. Specifically, the framework achieves 96.2% accuracy in SQLi detection, a 12% attack rate 

for model poisoning, and a 91.3% F1-score for IoT spoofing detection. Additionally, the blockchain component shows a 

throughput of 1,450 transactions per second (TPS) and therefore demonstrates the system's scalability and effectiveness in 

real-world applications. 

The modular design of the framework enables seamless integration into a wide range of Web 4.0 applications, ranging 

from decentralized finance platforms to IoT systems. The 48% increase in user trust demonstrates the system's usability in 

real-world applications. The transparency provided by reputation scores and blockchain-based transactions enhances user 

confidence significantly and dispels fears commonly associated with decentralized systems. 

However, some issues remain. The application of synthetic data to identify IoT spoofing and the latency overhead of 

federated learning suggest avenues that require further refinement, particularly in real-world field deployments. Subsequent 

releases of the framework will focus on addressing these limitations by using more diverse, real-world datasets and optimizing 

aggregation algorithms to reduce latency. In addition, investigating different quantum-resistant hashing methods for 

blockchain verification and performing large-scale testing on live trading platforms will be vital for evaluating the 

framework's stability in dynamic, production environments. 

In conclusion, by combining the flexibility of AI with the transparency and trust inherent in blockchain technology, it 

will provide a foundation for how secure, scalable, and easy-to-use architectures can be built to truly address new problems 

that the next generation of web applications will confront. 

 

References 
[1] Z. S. Alwan and M. F. Younis, "RNN-based detection of SQLi attacks," in Proceedings of the IEEE Conference on 

Communications and Network Security (CNS), 2017.  

[2] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, "How to backdoor federated learning," in Proceedings of the 

23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 2020, pp. 2938–2948.  

[3] B. Biggio, B. Nelson, and P. Laskov, "Poisoning attacks against support vector machines," in Proceedings of the 29th 

International Conference on Machine Learning, 2012.  

[4] A. Cui, M. Costello, and S. J. Stolfo, "When IoT devices are spoofed: A case study," in Proceedings of the USENIX Security 

Symposium, 2019, pp. 1103–1120.  

[5] A. Dorri, S. S. Kanhere, and R. Jurdak, "Blockchain for IoT security: A survey," IEEE Internet of Things Journal, vol. 4, no. 5, 

pp. 3650–3663, 2017.  https://doi.org/10.1109/JIOT.2017.2700470 

[6] M. Fang, X. Cao, J. Jia, and N. Z. Gong, "Local model poisoning attacks to Byzantine-robust federated learning," in Proceedings 

of the USENIX Security Symposium, 2020, pp. 1605–1622.  

[7] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras, and H. Janicke, " (). Blockchain technologies for IoT security: 

A primer," IEEE Network, vol. 34, no. 5, pp. 8–14, 2020.  https://doi.org/10.1109/MNET.011.1900630 

[8] R. Gupta, M. M. Patel, S. Tanwar, N. Kumar, and J. J. Rodrigues, "AI-blockchain synergy: A systematic review," IEEE 

Transactions on Emerging Topics in Computing, vol. 11, no. 2, pp. 1–15, 2023.  https://doi.org/10.1109/TETC.2022.3225678 

[9] W. G. Halfond, J. Viegas, and A. Orso, "A classification of SQL injection attacks and countermeasures," in Proceedings of the 

IEEE International Symposium on Software Reliability Engineering, 2006, pp. 13–24.  

[10] S. Hussain, A. Kamal, S. Ahmad, G. Rasool, and M. Iqbal, "Blockchain-enabled federated learning: A survey," Future 

Generation Computer Systems, vol. 129, pp. 1–13, 2022.  https://doi.org/10.1016/j.future.2021.11.006 

https://doi.org/10.1109/JIOT.2017.2700470
https://doi.org/10.1109/MNET.011.1900630
https://doi.org/10.1109/TETC.2022.3225678
https://doi.org/10.1016/j.future.2021.11.006


 
 

               International Journal of Innovative Research and Scientific Studies, 8(3) 2025, pages: 2759-2773
 

2772 

[11] H. Kim, J. Lee, and J. Park, "Decentralized AI: Challenges and opportunities," ACM SIGCOMM Computer Communication 

Review, vol. 52, no. 3, pp. 21–27, 2022.  

[12] Y. LeCun, Y. Bengio, and G. Hinton, "Deep Learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.  

https://doi.org/10.1038/nature14539 

[13] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, "Blockchain and AI: A paradigm shift in cybersecurity," IEEE Access, vol. 

9, pp. 57678–57695, 2021.  https://doi.org/10.1109/ACCESS.2021.3070300 

[14] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla, "AI-blockchain fusion for IoT malware detection," IEEE 

Transactions on Dependable and Secure Computing, vol. 19, no. 4, pp. 2334–2346, 2021.  

https://doi.org/10.1109/TDSC.2021.3074862 

[15] M. Lischke and B. Bagheri, "Bitcoin OTC trust network analysis," in Proceedings of the IEEE International Conference on 

Blockchain (Blockchain), 2020, pp. 1–8.  

[16] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, "Blockchain and the internet of things: Challenges and solutions," IEEE 

Internet of Things Journal, vol. 8, no. 13, pp. 10512–10526, 2021.  https://doi.org/10.1109/JIOT.2021.3060504 

[17] S. McClure, SQL injection: Myths and fallacies. United States: Microsoft Security Blog, 2007. 

[18] S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system," Retrieved: https://bitcoin.org/bitcoin.pdf, 2008. 

[19] OWASP, "SQL injection prevention cheat sheet," Retrieved: 

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html, 2023. 

[20] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, "The limitations of deep learning in adversarial 

settings," in Proceedings of the IEEE Symposium on Security and Privacy (S&P), 2016, pp. 372–387.  

[21] M. Swan, Blockchain: Blueprint for a new economy. United States: O’Reilly Media, 2015. 

[22] F. Tschorsch and B. Scheuermann, "Blockchain and machine learning: A critical review," ACM Computing Surveys (CSUR), 

vol. 54, no. 11s, pp. 1–36, 2022.  https://doi.org/10.1145/3510410 

[23] A. Woodie, "Why cybersecurity remains a top challenge for AI adoption. Datanami," Retrieved: 

https://www.datanami.com/2021/05/12/why-cybersecurity-remains-a-top-challenge-for-ai-adoption/, 2021. 

[24] C. Xie, S. Koyejo, and I. Gupta, "CRFL: Certifiably robust federated learning," in Proceedings of the 9th International 

Conference on Learning Representations, 2021.  

[25] J. Zhang, F. Li, S. Wang, and S. Wu, "Machine learning for SQL injection detection: A review," Computers & Security, vol. 92, 

p. 101742, 2020.  https://doi.org/10.1016/j.cose.2020.101742 

[26] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, "A survey on the security of blockchain systems," Future Generation Computer 

Systems, vol. 107, pp. 841-853, 2020.  https://doi.org/10.1016/j.future.2017.08.020 

[27] K. Bonawitz et al., "Towards federated learning at scale: System design," Proceedings of machine learning and systems, vol. 1, 

pp. 374-388, 2019.  

[28] M. Hasan, M. M. Islam, M. I. I. Zarif, and M. Hashem, "Attack and anomaly detection in IoT sensors in IoT sites using machine 

learning approaches," Internet of Things, vol. 7, p. 100059, 2019.  https://doi.org/10.1016/j.iot.2019.100059 

[29] J. Kim, K. Shim, and L. Pu, "Lightweight CNN architectures for IoT device authentication: A hardware-software co-design 

approach," ACM Transactions on Internet of Things, vol. 4, no. 2, pp. 1–25, 2023.  

[30] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, "Beyond inferring class representatives: User-level privacy leakage 

from federated learning," presented at the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, IEEE, 2019. 

[31] R. Patel, A. Singh, and N. Kumar, "Blockchain consensus mechanisms for IoT: A comparative analysis of speed and security 

tradeoffs," Future Generation Computer Systems, vol. 158, pp. 291–305, 2024.  

[32] Q. Wang, L. Zhang, and R. Lu, "Blockchain-enhanced adaptive retraining for ai-driven threat detection," Computers & Security, 

vol. 131, p. 103298, 2023.  

[33] A. Dorri, S. S. Kanhere, and R. Jurdak, "Blockchain in internet of things: Challenges and solutions," ACM Computing Surveys, 

vol. 54, no. 10s, pp. 1–34, 2022.  https://doi.org/10.1145/3524110 

[34] S. Lee and J. Kim, "Proof-of-adaptive-stake: A latency-optimized consensus for real-time blockchain validation," IEEE Internet 

of Things Journal, vol. 11, no. 7, pp. 11234–11249, 2024.  

[35] K. Lee, J. Kim, and S. Park, "Proof-of-history: A scalable consensus mechanism for real-time blockchain validation," IEEE 

Internet of Things Journal, vol. 11, no. 5, pp. 8901–8915, 2024.  

[36] A. Vaswani, N. Shazeer, and N. Parmar, "Proof-of-learning: A consensus mechanism for decentralized Ai validation," ACM 

Transactions on Blockchain Technology, vol. 4, no. 1, pp. 1–25, 2023.  

[37] L. Wang, Z. Chen, and X. Li, "Transformer-based SQL injection detection with contextual attention mechanisms," Computers 

& Security, vol. 132, p. 103409, 2023.  

[38] P. Sharma, R. Gupta, and M. Alazab, "Edge-aware lightweight CNNs for IoT device authentication in blockchain-enabled 

networks," ACM Transactions on Sensor Networks, vol. 19, no. 3, pp. 1–27, 2023.  

[39] H. T. Nguyen, T. D. Nguyen, and C. Pham, "Privacy-preserving federated learning with homomorphic encryption and blockchain 

auditing," IEEE Transactions on Information Forensics and Security, vol. 19, pp. 1125–1139, 2023.  

[40] Y. Li, T. Chen, and Z. Wang, "Byzantine-resilient federated learning with dynamic reputation and homomorphic encryption," in 

Proceedings of the 40th International Conference on Machine Learning (ICML), 2023, pp. 18945–18960.  

[41] Z. Wang, R. Lu, and L. Zhang, "Blockchain-driven threat intelligence for self-healing AI models," Computers & Security, vol. 

136, p. 103589, 2024.  https://doi.org/10.1016/j.cose.2024.103589 

[42] M. Alazab, S. Khan, and S. Piramuthu, "Blockchain-enabled lightweight authentication for 6G-IoT networks," IEEE 

Transactions on Industrial Informatics, vol. 20, no. 4, pp. 5678–5690, 2024.  

[43] A. Almaini, A. Al-Dubai, I. Romdhani, M. Schramm, and A. Alsarhan, "Lightweight edge authentication for software defined 

networks," Computing, vol. 103, no. 2, pp. 291-311, 2021.  

[44] M. Aljaidi, "A critical evaluation of a recent cybersecurity attack on itunes software updater," presented at the 2022 International 

Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI), Zarqa, Jordan, 2022. 

[45] R. Alqura’n et al., "Advancing XSS detection in IoT over 5G: A cutting-edge artificial neural network approach," IoT, vol. 5, 

no. 3, pp. 478-508, 2024.  

[46] J. Park, H. Kim, and S. Lee, "Hardware-accelerated lightweight CNNs for real-time iot authentication in blockchain networks," 

IEEE Internet of Things Journal, vol. 11, no. 6, pp. 10234–10249, 2024.  

https://doi.org/10.1038/nature14539
https://doi.org/10.1109/ACCESS.2021.3070300
https://doi.org/10.1109/TDSC.2021.3074862
https://doi.org/10.1109/JIOT.2021.3060504
https://bitcoin.org/bitcoin.pdf
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://doi.org/10.1145/3510410
https://www.datanami.com/2021/05/12/why-cybersecurity-remains-a-top-challenge-for-ai-adoption/
https://doi.org/10.1016/j.cose.2020.101742
https://doi.org/10.1016/j.future.2017.08.020
https://doi.org/10.1016/j.iot.2019.100059
https://doi.org/10.1145/3524110
https://doi.org/10.1016/j.cose.2024.103589


 
 

               International Journal of Innovative Research and Scientific Studies, 8(3) 2025, pages: 2759-2773
 

2773 

[47] Y. Chen, Z. Li, and H. Wang, "Adaptive SQL injection detection using transformer models in decentralized networks," IEEE 

Transactions on Dependable and Secure Computing, vol. 20, no. 4, pp. 2456–2470, 2023.  

[48] T. Nguyen, S. Riahi, and A. Cidon, "Byzantine-resilient federated learning with zero-knowledge proofs," in Proceedings of the 

41st International Conference on Machine Learning (ICML), 2024, pp. 1–15.  

[49] S. Goldwasser, Y. Kalai, and G. N. Rothblum, "Zero-knowledge proofs for federated learning: Ensuring privacy in decentralized 

AI," Journal of Cryptology, vol. 36, no. 4, pp. 1–34, 2023.  

[50] S. Kim, J. Lee, and H. Park, "EdgeLight: A hardware-optimized CNN for real-time IoT device authentication," ACM 

Transactions on Embedded Computing Systems, vol. 23, no. 2, pp. 1–24, 2024.  

[51] R. Kumar, S. Singh, and M. Alazab, "Adaptive SQL injection detection using graph neural networks in decentralized systems," 

IEEE Transactions on Information Forensics and Security, vol. 19, pp. 2105–2119, 2024.  

[52] H. V. Tran and T. D. Nguyen, "Syntax-aware SQL injection detection using attention-based transformers," IEEE Transactions 

on Dependable and Secure Computing, vol. 21, no. 3, pp. 1892–1905, 2024.  

[53] L. Chen, Y. Zhang, and Q. Li, "Byzantine-robust federated learning via credibility-aware aggregation," in Proceedings of the 

40th International Conference on Machine Learning (ICML), 2023, pp. 1–15.  

[54] R. Gupta, S. Tanwar, and M. Alshehri, "Blockchain for secure and decentralized artificial intelligence in cybersecurity: A 

comprehensive review," Computers & Security, vol. 129, p. 103456, 2024.  

[55] A. Alzahrani and M. A. Khan, "Integrating blockchain with artificial intelligence to secure IoT networks: Future trends," 

Sustainability, vol. 14, no. 23, p. 16002, 2022.  

[56] T. Alharbi, A. Aljuhani, and S. S. Alotaibi, "AIBPSF-IoMT: Artificial intelligence and blockchain-based predictive security 

framework for IoMT technologies," Electronics, vol. 12, no. 23, p. 4806, 2023.  https://doi.org/10.3390/electronics12234806 

[57] R. S. Parte, A. R. Maddur, and O. S. Muley, "Blockchain enhanced AI digital forensic framework for malware analysis," SSRN 

Electronic Journal, 2025.  https://doi.org/10.2139/ssrn.5106294 

[58] J. Smith and K. Lee, "AI-protected blockchain-based IoT environments: Harnessing the future of network security and privacy," 

arXiv, 2024.  https://arxiv.org/abs/2405.13847v1 

[59] OWASP Foundation, AI security and privacy guide. United States: OWASP Foundation, 2024. 

[60] A. Ayoub, A. Anjali, O. Ibrahim, B. Mohammad, A.-K. Ahmad, and K. Yousef, "Optimal spectrum utilisation in cognitive 

network using combined spectrum sharing approach: overlay, underlay and trading," International Journal of Business 

Information Systems, vol. 12, no. 4, pp. 423-454, 2013.  

[61] A. Alsarhan et al., "Optimizing cyber threat detection in IoT: A study of artificial bee colony (ABC)-based hyperparameter tuning 

for machine learning," Technologies, vol. 12, no. 10, pp. 181–200, 2024.  

 

 

https://doi.org/10.3390/electronics12234806
https://doi.org/10.2139/ssrn.5106294
https://arxiv.org/abs/2405.13847v1

