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Abstract 

Chimpanzee genome research plays a crucial role in understanding evolution, health, and biological functions. However, 

incomplete labeling of DNA sequence data presents a challenge for accurate genomic classification. This study aims to 

improve chimpanzee DNA sequence classification by addressing label scarcity and data imbalance through a deep learning 

approach. A Recurrent Neural Network Long Short-Term Memory (RNN-LSTM) model with L1 Regularization and pseudo-

labeling is employed to enhance classification performance. The workflow includes numerical encoding of DNA sequences, 

pseudo-labeling to augment training data, and model training using Stochastic Gradient Descent (SGD) optimization. 

Performance evaluation is conducted using classification accuracy and AUC metrics. Results show that the proposed 

approach achieves high classification accuracy, with an AUC ranging from 0.94 to 0.99, significantly improving the handling 

of imbalanced datasets. The integration of pseudo-labeling effectively leverages unlabeled DNA sequences, leading to a more 

robust genomic classification model. These findings highlight the potential of combining RNN-LSTM with L1 Regularization 

and pseudo-labeling to address incomplete labeling in genomic datasets. The study advances genomic classification 

techniques and supports Goal 3: Good Health and Well-being of the Sustainable Development Goals (SDGs) by enhancing 

DNA sequence classification accuracy, facilitating early disease detection, precision medicine, and evolutionary studies. 
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1. Introduction 

Genomic data analysis has become a crucial field in the modern era, particularly in the context of global health [1]. 

Understanding the relationship between DNA sequences and their biological functions is essential a identifying disease 

mechanisms and developing more targeted therapies [2]. However, one of the main challenges in genomic analysis is the 

lack of labelled data, where many DNA sequences do not have clear protein annotations. This limitation can hinder the 

mapping of DNA sequences to their corresponding proteins, restricting potential applications in biomedical research and 

evolutionary studies [3]. Therefore, more sophisticated approaches are needed to improve the accuracy of genomic data 

classification.  

Chimpanzee genomes are utilized in this study due to their significant similarity to the human genome, making them 

an essential subject in genomic research [4]. The study of chimpanzee genomes provides insights into evolution, biological 

functions, and disease mechanisms relevant to humans [5]. Several gene families analyzed in this research include G 

protein-coupled receptors (GPCRs), tyrosine kinases, tyrosine phosphatases, synthetases, synthases, ion channels, and 

transcription factors. These genes play a critical role in various physiological and pathological processes related to human 

health, such as cell signaling regulation, gene expression, and intercellular communication [6].  

However, many prior studies have relied solely on fully labeled datasets, which are less effective for real-world 

genomic data that is often incomplete [7]. To address this limitation, this study adopts pseudo-labeling, a semi-supervised 

learning technique that enables models to utilize unlabeled data to enhance classification accuracy and generalization [8]. 

Building on these advancements, deep learning, particularly Convolutional Neural Networks (CNNs), has become a crucial 

tool for processing complex data. However, CNNs are vulnerable to noise interference, which can affect classification 

accuracy [9]. 

Previous research has demonstrated that deep learning models, such as Convolutional Neural Networks (CNNs) and 

Long Short-Term Memory (LSTM), have been successfully applied to genomic data analysis. CNNs have shown high 

accuracy in DNA sequence classification, while LSTM excels in capturing long-term dependencies within sequential data 

[10]. Deep learning techniques (DL) have also significantly improved the accuracy of DNA sequence predictions and 

classifications. However, challenges remain, particularly in identifying and predicting splice sites in eukaryotic genomes 

due to the high rate of erroneous discoveries. To address this issue, a recent study proposed a bidirectional LSTM-Recurrent 

Neural Network (RNN) combined with a Gated Recurrent Unit (GRU) to recognize and predict splice sites in eukaryotic 

DNA sequences based on intron length constraints, demonstrating improved performance with increasing training epochs. 

In addition to genomics, DL has also been widely adopted in medical diagnostics, particularly in the classification of 

ultrasound images for early detection of diseases [11]. For instance, a recent study utilized VGG19 Net to classify ovarian 

ultrasound images for detecting Polycystic Ovary Syndrome (PCOS), outperforming traditional machine learning 

techniques such as Random Forest, Logistic Regression, Bayesian Classifier, Support Vector Machine, and Artificial Neural 

Network in distinguishing between benign and malignant cysts [12]. Despite these advancements, many prior studies have 

relied solely on fully labelled datasets, which limits their effectiveness when applied to real-world genomic data that is 

often incomplete [7]. To overcome this limitation, this study employs pseudo-labelling, a semi-supervised learning 

technique that allows models to utilize unlabeled data, improving classification accuracy and generalization [8]. 

This research implements a Recurrent Neural Network - Long Short-Term Memory (RNN-LSTM) model combined 

with pseudo-labelling to classify chimpanzee DNA sequences obtained from Kaggle and Ensemble Genome Browser, 

introducing a more innovative approach than previous studies. Instead of relying solely on labelled datasets, as seen in 

conventional deep learning methods like CNNs or LSTMs without semi-supervised learning, this study incorporates L1 

regularization-based feature selection to identify the most relevant genetic features, reducing data dimensionality while 

preserving essential information. Additionally, pseudo-labelling is integrated as a semi-supervised learning strategy, 

allowing unlabeled data to be assigned labels based on initial model predictions, which are then incorporated into the 

training process to enhance model generalization, especially in scenarios with limited labelled data. In terms of deep 

learning architecture, RNN-LSTM is chosen for its ability to capture both long-term and short-term dependencies in 

sequential data, which CNN-based methods cannot fully optimize. The combination of L1 regularization, pseudo-labelling, 

and RNN-LSTM architecture makes the model more accurate, efficient in data processing, and robust in handling 

imbalanced genomic datasets. This approach also aligns with Goal 3: Good Health and Well-being of the Sustainable 

Development Goals (SDGs) by improving genomic analysis methods for early disease detection and the development of 

more precise gene-based therapies. 

 

2. Methods and Materials 
The method in this study is a pseudo-labelling approach with the LSTM-RNN model to classify DNA sequences. This 

process includes data preprocessing, initial model training using labelled data, pseudo-labelling unlabeled data, and 

retraining the model with a combination of labelled and pseudo-labelled data, as shown in Figure 1. 
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Figure 1. 

Workflow of LSTM-RNN Training with Pseudo-Labeling for DNA Sequence Classification. 

 

Figure 1 illustrates the workflow of the research on training an LSTM-RNN model with pseudo-labelling techniques 

to recognize patterns in DNA sequences and predict protein labels. The study begins with genomic data preprocessing, 

including One-Hot Encoding, K-mer Embedding, and Padding, followed by Feature Selection using L1 Regularization. The 

data is then divided into labelled and unlabeled datasets, where the initial LSTM-RNN model is trained using labelled data. 

This model is subsequently used to predict labels for the unlabeled data, which are then assigned pseudo-labels. The original 

labelled data and pseudo-labelled data are combined to retrain the model, improving prediction performance. The model is 

evaluated using metrics such as accuracy, cross-entropy loss, ROC curve & AUC, and precision-recall curve to assess the 

effectiveness of the pseudo-labelling approach in genomic data classification. 

The data used in this study are DNA sequence data, so the initial step is data preprocessing to convert nucleotide 

sequences into a numerical format that can be understood by the model. The data preprocessing stage is a crucial step in 

building a machine learning model, especially in DNA sequence analysis. This process aims to clean, encode, and prepare 

the data for use in model training.  

 

2.1. Data Preprocessing  

DNA sequence data preprocessing is a step in bioinformatics analysis aimed at converting nucleotide sequences into 

numerical representations that can be used by machine learning models [13]. This process includes various techniques such 

as one-hot encoding, k-mer-based embedding, padding, and array conversion to ensure the data is ready for model training 

[14]. The detailed steps of DNA sequence data preprocessing are illustrated in Figure 2. 

 

 
Figure 2. 

Preprocessing Pipeline of DNA Sequence Data. 

 
Figure 2 illustrates the preprocessing pipeline of DNA sequence data in this study, starting with loading the sequence 

data as input. The DNA sequence is then encoded using one-hot encoding to represent nucleotides as binary vectors and 

transformed into a k-mer (k=3) embedding to capture specific patterns. Next, the data is converted into sparse and dense 
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representations for efficient processing by the model, and padding is applied to ensure uniform sequence length with a 

maximum of 100. Features from one-hot encoding and k-mer embedding are combined to produce a richer representation, 

and once all steps are completed, the data is ready for machine learning model training, aiming to improve efficiency and 

accuracy in genetic function prediction. 

The first step in DNA sequence data preprocessing is One-Hot Encoding. This method converts nucleotides in a DNA 

sequence (A, T, G, C) into binary vectors, making them easier for machine learning models to process [15]. Each nucleotide 

is represented by a 4-dimensional vector, where one element is set to 1 (active) and the other three elements are set to 0 

(inactive). For example, the nucleotides "A", "T", "G", and "C" are represented as follows: 

A = [1, 0, 0, 0]. 

T = [0, 1, 0, 0]. 

G = [0, 0, 1, 0]. 

C = [0, 0, 0, 1]. 

This transformation can be described as mapping each nucleotide 𝑥 ∈ {𝐴, 𝑇, 𝐺, 𝐶} to a vector �⃗� ∈ {0,1}4, where the 

position corresponding to the nucleotide is set to 1, and the remaining positions are set to 0. 

Next, K-mer Embedding is applied, which offers another way to represent DNA sequence data. In this method, the 

DNA sequence is split into smaller segments of size 𝑘(𝑘 − 𝑚𝑒𝑟𝑠), capturing local patterns within the sequence. For 

instance, with 𝑘 = 3, the DNA sequence "ATGCGT" would generate the k-mers: "ATG", "TGC", and "CGT". Each k-mer 

is then represented as a vector using embedding techniques like Word2Vec or GloVe [16]. This approach allows the model 

to capture more complex relationships between k-mers, recognizing patterns and similarities in the sequence. 

Mathematically, this can be viewed as mapping each k-mer 𝑘 ∈ {𝑘 − 𝑚𝑒𝑟} to a vector �⃗� ∈ 𝑅𝑑, where each k-mer is 

represented in a continuous vector space. 

Lastly, Padding is applied to ensure that all sequences have the same length [17]. Padding adds a specific symbol (e.g., 

'N' or 'X') to shorter sequences until they reach a uniform length. This step is crucial for models that require fixed-length 

input. For example, if the maximum sequence length is set to 100 and a sequence has a length of 90, padding will add 10 

'X' symbols to make the sequence length 100. This ensures that all input sequences are consistent in size. Padding can be 

represented as a function 𝑃: {𝑆𝑖} → {𝑆𝑗}, where 𝑆𝑖 is the original sequence with length 𝑛𝑖, and 𝑆𝑗 is the padded sequence 

with length 𝑛𝑗 (where 𝑛𝑗 ≥ 𝑛𝑖) by adding specific symbols (e.g., 'X') until the sequence length reaches 𝑛𝑗. 

 

2.2. L1 Regularization Feature Selection 

In this study, L1 Regularization is applied for feature selection on chimpanzee genome data to identify relevant genetic 

features for predicting specific diseases or traits [18]. L1 Regularization, also known as Lasso (Least Absolute Shrinkage 

and Selection Operator), is a technique that adds a penalty to the absolute values of the model coefficients [19]. This penalty 

encourages some of the coefficients to shrink to zero, effectively performing feature selection by eliminating less relevant 

features. This not only improves the model's performance by reducing overfitting but also enhances its interpretability by 

highlighting the most important features for prediction. A regression model with L1 regularization can be expressed as 

follows: 

Minimize Loss Function + 𝜆 ∑ |𝑤𝑖|
𝑛
𝑖=1       (1) 

Where 𝑤𝑖  represents the model coefficients and 𝜆 is the regularization parameter that controls the degree of feature 

selection. 

 

2.3. Long Short-Term Memory (LSTM) Architecture within a Recurrent Neural Network (RNN) 

The Long Short-Term Memory (LSTM) architecture within a Recurrent Neural Network (RNN) has been employed to 

analyze chimpanzee DNA sequence data, both labeled and unlabeled. Labelled data consists of DNA sequences classified 

into specific gene families, while unlabeled data includes sequences without predefined categories. In this model, each 

DNA sequence is represented as an embedding vector to capture structural relationships and biological context before being 

processed through LSTM layers [20]. LSTM plays a crucial role in identifying sequential patterns and long-range 

dependencies between nucleotides by preserving essential information within memory cells. The hidden LSTM layer 

encodes contextual information from DNA sequences, which is then classified using a softmax layer to predict the 

corresponding gene family. For unlabeled data, the model can be applied in unsupervised learning to uncover latent patterns 

and structures within DNA sequences, offering deeper insights into unclassified genetic functions. The LSTM-based 

approach surpasses conventional RNNs by effectively mitigating the vanishing gradient problem, enabling more efficient 

long-term information processing in complex biological sequence analysis. Figure 3 is the RNN architecture used in this 

study. 
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Figure 3. 

Architecture of an LSTM Network Within an RNN. 

 

Figure 3 illustrates the architecture of an LSTM network within an RNN designed for DNA sequence analysis. This 

model consists of several key layers, starting with the Input Layer, represented by symbols, which correspond to nucleotide 

sequences encoded in numerical form. Next, the Embedding Layer transforms the input into a richer numerical 

representation, making it easier for the model to process. The Hidden Layer (LSTM Layer) captures long-term sequential 

dependencies by utilizing memory cells, addressing the vanishing gradient problem commonly found in traditional RNNs, 

and passing the information to the next unit. The output from the LSTM layer is then processed through the Output Layer 

(Softmax Layer), which generates probability distributions for each target class, enabling the classification of DNA 

sequences into specific gene families. The Label Output (0/1/2/3/4/5/6) represents different classification categories, such 

as G protein-coupled receptors, tyrosine kinases, ion channels, and others. Overall, this model effectively facilitates the 

analysis of DNA sequences in bioinformatics research by capturing long-term patterns in sequential data. 

The LSTM process in RNN involves the input gate storing new information, the forget gate removing irrelevant data, 

and the output gate generating outputs based on the updated cell state. This mechanism enables the model to capture long-

term patterns in DNA sequences, mitigate the vanishing gradient problem, and improve biological data analysis accuracy 

[21]. Furthermore, numerical DNA representations are processed through an embedding layer, analyzed by LSTM, and 

classified using a softmax layer to identify specific gene families [22]. The input gate 𝑖𝑡 controls the new information that 

will be stored in the cell state. This is achieved by filtering the information using a sigmoid activation function, which 

returns values between 0 and 1. The mathematical equation for the input gate is: 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1,𝑥𝑡] + 𝑏𝑖) (2) 

Where 𝑖𝑡 represents the output of the input gate, 𝜎 is the sigmoid activation function, and 𝑊𝑖 denotes the weight 

associated with the input gate. The term ℎ𝑡−1 corresponds to the output from the previous time step, while 𝑋𝑡  represents 

the input at the current time step 𝑡. Additionally, 𝑏𝑖 serves as the bias for the input gate, helping to adjust the activation 

function's response. 

The forget gate (𝑓𝑡) determines which information should be removed from the cell state. It also utilizes a sigmoid 

activation function to decide the extent to which information should be forgotten. The mathematical equation for the forget 

gate is: 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑓) (3) 

Where 𝑓𝑡 represents the output of the forget gate, 𝑊𝑓is the weight associated with the forget gate, and 𝑏𝑓 is the bias 

that helps adjust the activation function’s response. This mechanism ensures that the model selectively retains or discards 

information from the cell state, optimizing long-term sequence processing. 

The output gate (𝑜𝑡) generates the final output based on the cell state and previously processed information. It 

regulates how much of the updated cell state contributes to the next hidden state. The mathematical equation for the 

output gate is: 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑜) (4) 

Where 𝑜𝑡 represents the output of the output gate, 𝑊𝑜 is the weight associated with the output gate, and 𝑏𝑜 is the bias 

that helps regulate the activation function’s response. This gate determines the extent to which the current cell state 

contributes to the hidden state, ensuring that only the most relevant information is passed forward in the sequence. 

After determining the values of the three gates, the next step is to update the cell state. This process involves two key 

steps: 

• Calculating the candidate cell state (𝐶𝑡
~) value, which represents potential new information to be added: 

 𝐶𝑡
~ = 𝑡𝑎𝑛 ℎ(𝑊𝑐[ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑐) (5) 

 

• Updating the cell state (𝐶𝑡) by combining the retained past state with the newly selected information: 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡 − 1 + 𝑖𝑡 ⋅ 𝐶𝑡
~ (6) 

This mechanism allows the model to maintain long-term dependencies while filtering out irrelevant data, ensuring 

effective sequential learning. 



 
 

               International Journal of Innovative Research and Scientific Studies, 8(3) 2025, pages: 2774-2786
 

2779 

Finally, the final output (ℎ𝑡) is calculated using the cell state and the output gate: 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝐶𝑡) (7) 

With the LSTM architecture incorporating three main gates, the model can effectively store and manage long-term 

information while filtering out irrelevant data during the learning process. This enables LSTM to capture sequential 

dependencies more efficiently, making it well-suited for tasks involving long-range patterns in time-series and sequence 

data 

 

2.4. Pseudo-Labelling 

Pseudo-labelling is a semi-supervised learning technique used to enhance the performance of LSTM-RNN models in 

DNA sequence classification by leveraging unlabeled data [23]. The process begins with a pre-trained model predicting 

labels for unlabeled data, formulated as: 

𝑦�̂� = 𝑓(𝑥𝑖 ; 𝜃) (8) 

where 𝑦�̂� represents the predicted label for the DNA sequence 𝑥𝑖. Next, pseudo-labels are assigned if the confidence 

score exceeds 90%, calculated using the softmax function: 

𝑃(𝑦 = 𝑗|𝑥𝑖) =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝑘

 
(9) 

where 𝑧𝑗is the logit for class 𝑗. If the confidence score meets the threshold, pseudo-labels are assigned based on: 

�̂�𝑖  =  {
𝑙𝑎𝑏𝑒𝑙𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  

𝑛𝑜 𝑙𝑎𝑏𝑒𝑙
  , 𝑖𝑓    𝑃(𝑦 = 𝑗(𝑥𝑖)) > 0.9 

(10) 

The combined dataset is then 𝐷𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝐷𝑙𝑎𝑏𝑒𝑙 ∪ 𝐷𝑝𝑠𝑒𝑢𝑑𝑜 , where 𝐷𝑝𝑠𝑒𝑢𝑑𝑜 = {(𝑥𝑗 , 𝑦�̂�)}. The LSTM-RNN model is 

retrained using this expanded dataset with the loss function: 

𝐿(𝜃) = −
1

𝑁
∑ 𝑦𝑖

𝑁

𝑖=1

log(𝑓(𝑥𝑖 ; 𝜃)) 
(11) 

Where represents the total number of data points in the combined dataset. This iterative process continues until 

accuracy or F1-score stabilizes, enabling the LSTM-RNN model to capture sequential patterns in genomic data more 

effectively and improve generalization in genetic classification. 

 

2.5. Model Evaluation 

Several model evaluation metrics are used in this study to assess the performance of RNN-LSTM in classifying 

chimpanzee DNA sequences with the Pseudo-Labelling technique.  

 

2.5.1. Accuracy 

One key metric is accuracy, which measures the percentage of correct predictions out of total predictions. A high 

accuracy indicates the model’s ability to effectively recognize genetic patterns, even in complex sequences [24]. By 

incorporating Pseudo-Labelling, the model learns more efficiently from unlabeled data, enhancing overall classification 

performance. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(12) 

Where TP and TN represent correct predictions for positive and negative cases, while FP and FN indicate incorrect 

predictions. These metrics assess the RNN-LSTM model's classification performance in DNA sequence analysis. 

 

2.5.2. Loss Function  

The Loss Function, specifically Cross-Entropy Loss, measures the prediction error of the RNN-LSTM model in 

classifying chimpanzee DNA sequences [25]. It quantifies the difference between predicted probabilities and true labels, 

ensuring the model effectively distinguishes genetic patterns across categories like G protein-coupled receptors or Tyrosine 

kinase. A lower loss value indicates improved classification performance. With Pseudo-Labelling, the model learns from 

unlabeled data, leading to a gradual loss reduction. The Loss Curve shows a stable decline, demonstrating effective 

parameter optimization and improved accuracy without overfitting [26]. The mathematical formula for Cross-Entropy Loss 

in multi-class classification is: 

𝐿 = − ∑ 𝑦𝑖

𝑁

𝑖=1

log(𝑦�̂�) 

(13) 

Where 𝑁 represents the total number of samples, 𝑦𝑖  is the actual class label (1 if correct, 0 otherwise), and 𝑦�̂� is the 

predicted probability for the class 𝑖. This ensures that the model learns to minimize the difference between actual and 

predicted labels, improving classification accuracy in DNA sequence analysis. 

 

2.5.3. ROC (Receiver Operating Characteristic) Curve 

The ROC (Receiver Operating Characteristic) Curve illustrates the relationship between the True Positive Rate (TPR) 

and the False Positive Rate (FPR) across different classification thresholds. The AUC (Area Under the Curve) measures 

the model’s ability to distinguish between positive and negative classes, with higher values (closer to 1) indicating better 

classification performance. AUC is computed as the integral area under the ROC curve, providing a comprehensive 
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evaluation of the model’s discrimination power [27]. A higher AUC value signifies that the model effectively differentiates 

between classes, making it a crucial metric in assessing the performance of DNA sequence classification using RNN-LSTM. 

The Formula is: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(14) 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(15) 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)
1

0

 𝑑(𝐹𝑃𝑅) 
(16) 

Equation 14 defines the True Positive Rate (TPR) as a measure of the model's sensitivity, while Equation 15 calculates 

the False Positive Rate (FPR) to assess misclassification of negative samples. Equation 16 describes the Area Under the 

Curve (AUC) as the integral of TPR over FPR, reflecting the model's ability to distinguish between positive and negative 

classes. The higher the AUC, the better the classification performance. 

 

2.5.4. Precision-Recall Curve 

The Precision-Recall Curve is used to evaluate model performance, especially in imbalanced datasets. Precision 

measures the accuracy of positive predictions, while Recall assesses how well the model identifies actual positive samples. 

Average Precision (AP) represents the mean precision across different recall levels [28]. A higher AP value indicates that 

the model effectively balances precision and recall, maintaining high precision even as recall increases. This metric is 

particularly useful for assessing classification performance when class distribution is skewed, ensuring the model's 

reliability in DNA sequence analysis using RNN-LSTM. The formula to get AP is. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(17) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(18) 

𝐴𝑃 = ∫ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑐𝑎𝑙𝑙)
1

0

 𝑑(𝑅𝑒𝑐𝑎𝑙𝑙) 
(19) 

Equation 17 defines Precision as the ratio of correctly predicted positive samples to all predicted positives, while 

Equation 18 represents Recall as the proportion of actual positives correctly identified. Equation 19 calculates Average 

Precision (AP) as the integral of Precision over Recall, reflecting the model’s ability to balance accuracy and completeness, 

particularly in imbalanced datasets. 

 

3. Results and Discussion 
In this study, the data was sourced from two public repositories, Kaggle and Ensemble Genome Browser, which provide 

chimpanzee DNA sequence datasets in both labelled and unlabeled forms. The labelled data consists of DNA sequences 

classified based on specific gene families, such as G protein-coupled receptors, tyrosine kinase, tyrosine phosphatase, 

synthetase, synthase, ion channels, and transcription factors. Each label represents a specific protein produced by the DNA 

sequence, serving as the basis for training the Recurrent Neural Network - Long Short-Term Memory (RNN-LSTM) model. 

The collected labelled data is sufficient to ensure a balanced category distribution, allowing the model to effectively 

recognize genetic patterns. The dataset details are presented in Table 1. 

 
Table 1. 

Characteristics of the Chimpanzee DNA Sequence Dataset. 

No Sequence Class 

1. ATGCCCC…G 4 

2. ATGAACGAA…A 4 

... … … 

1.682 ATGTTG…A 3 

 

The dataset in Table 1 consists of 1,682 rows with two columns: Sequence and Class, where the DNA sequence length 

varies between 200 and 2,000 nucleotides. This length range has been verified to comply with genomic standards. With 

sufficient data and an appropriate format, this study aims to develop an accurate RNN-LSTM-based protein prediction 

model and enhance classification performance through pseudo-labelling. 

 

3.1. Preprocessing Data Sequence 

The modelling process in this study begins with a preprocessing stage to convert DNA sequences into a numerical 

format that can be processed by the model. The preprocessing steps include One-Hot Encoding, which converts nucleotide 

characters into numerical representations, and k-mer embedding with 𝑘 =  3, where sequences are divided into consecutive 

substrings (k-mers) and transformed into vectors using CountVectorizer. The k-mer embedding results are then processed 

with padding using pad_sequences to ensure uniform vector length, with a maximum length of 100. Finally, features from 

One-Hot Encoding and k-mer embedding are combined into a single matrix to ensure an optimal representation of the DNA 

sequence data before being used for model training. The results of this preprocessing stage are presented in Table 2. 
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Table 2. 

Results of Pre-Processed Data. 

Sequence One-Hot Encoding K-mer Embedding (k=3) Padded K-mer Embedding 

ATGCGT [1, 0, 0, 0, 0, 0, 1, 0, ...] 

[ATG, TGC, GCG, CGT] → 

[3, 5, 2, 4] [3, 5, 2, 4, 0, 0, 0, ...] 

CGTACA [0, 1, 0, 0, 1, 0, 0, 1, ...] 

[CGT, GTA, TAC, ACA] → 

[4, 6, 7, 8] [4, 6, 7, 8, 0, 0, 0, ...] 

.. .. .. .. 

TACGGA [0, 0, 1, 1, 0, 0, 1, 0, ...] 

[TAC, ACG, CGG, GGA] → 

[7, 9, 10, 11] [7, 9, 10, 11, 0, 0, 0, ...] 

 

Table 2 presents the process of converting DNA sequences into numerical features, starting with One-Hot Encoding, 

followed by K-mer Embedding (k=3), which is transformed into numerical vectors, and finally Padded K-mer Embedding, 

where padding is applied to ensure a uniform length (maximum 100). 

 

3.2. Feature Selection Was Performed Using Lasso Regression 

Based on the preprocessing results above, feature selection was performed using Lasso Regression with L1 

regularization. Lasso applies a penalty to the absolute values of the coefficients in the loss function, aiming to shrink some 

coefficients to zero and eliminate irrelevant features. The Lasso loss function can be calculated as shown in Equation (1 

Table 3 presents the results of feature selection after applying Lasso Regression, where irrelevant features were removed, 

and significant features were selected for the subsequent model. 

 
Table 3. 

Feature Selection Outcomes for Genomic Classification. 

Feature Coefficient Selected (1 = Yes, 0 = No) 

ACG 534 1 

ATC 0 0 

... ... ... 

TCG 0 0 

 

Table 3 shows a reduction in features from 1775 to 62. Features with near-zero coefficients were removed as they were 

deemed irrelevant, while significant features were retained for further analysis. This selection process simplifies the model, 

reduces overfitting risk, and improves efficiency and prediction accuracy 

 

3.3. LSTM-RNN with Pseudo-Labelling 

After feature selection to retain relevant attributes, a Long Short-Term Memory (LSTM) Recurrent Neural Network 

(RNN) model is applied to analyze and predict genomic data. By leveraging pseudo-labelling, the model can identify 

patterns in previously unlabeled genomic data, which are typically difficult to use in conventional training. This technique 

enhances the training dataset by adding predicted labels to unlabeled data, ultimately improving prediction accuracy.  

Initially, genomic data is divided into two main groups: labelled data (80%) for training the model and unlabeled data 

(20%), which receives pseudo-labels after training. The labelled data is further split into training data (70%) and testing 

data (30%), where the training set is used to optimize model weights through backpropagation with the Adam optimizer, 

while the test set evaluates performance. The model structure is shown in Table 4. 

 
Table 4. 

Structural Configuration of the LSTM-RNN Model. 

Layer Units Activation Description 

LSTM 1 128 - return_sequences=True 

LSTM 2 64 - - 

Dropout - - Rate = 0.3 

Dense 32 ReLU Fully connected layer 

Output Layer 7 Softmax Probability prediction 

 

In the initial training phase, the model was trained using labelled training data, leveraging the LSTM architecture to 

recognize patterns in genomic data. The structural configuration of the LSTM-RNN model is presented in Table 4, detailing 

the number of units, activation functions, and specific layer descriptions used in the architecture. Training was conducted 

for 50 epochs using the sparse categorical cross-entropy loss function, which is suitable for multi-class classification, and 

the Adam optimizer with a learning rate of 0.001 to accelerate convergence. This training process aimed to optimize the 
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model's ability to understand relationships between processed genomic features. Table 5 presents the initial training results, 

demonstrating the model's effectiveness in identifying patterns within the training data. 

 
Table 5. 

Results of Initial Model Training. 

Sample ID Original Data (Features) True Label Model Prediction (Label) 

1 [0.23, 0.56, 0.98] Class 1 Class 1 

2 [0.12, 0.34, 0.45] Class 2 Class 2 

… … … … 

3 [0.45, 0.23, 0.76] Class 3 Class 3 

 

Table 5 presents the results of the initial model training, where the model’s predictions are compared against the true 

labels for a subset of the training data. This evaluation demonstrates the model's effectiveness in learning patterns from 

labeled genomic sequences before being applied to unlabeled data. After the initial training, the model is used to predict 

unlabeled data by generating pseudo-labels. Based on learned patterns, the model assigns a class prediction to each sample 

without an original label. This process utilizes the argmax function, selecting the class with the highest probability as the 

pseudo-label. As a result, previously unusable data can now contribute to further model training. Table 6 presents the 

pseudo-labelling results. 

 
Table 6. 

Results of Pseudo-Labeling Approach. 

Sample ID Unlabeled Data (Features) Model Prediction (Pseudo-Label) 

4 [0.67, 0.45, 0.23] Class 1 

5 [0.33, 0.56, 0.89] Class 2 

… … .. 

6 [0.12, 0.54, 0.34] Class 3 

 

Table 6 presents the results of the pseudo-labeling approach, where the model assigns predicted labels to previously 

unlabeled data based on learned patterns. These pseudo-labels are then integrated into the training dataset to enhance model 

performance. After obtaining pseudo-labels, the previously unlabeled data is combined with the labeled training data to 

enrich the training dataset, allowing the model to be trained on a larger and more diverse dataset. This integration aims to 

enhance the model's ability to recognize genomic patterns by leveraging information from both types of data. Once the 

combined dataset is formed, the model is retrained for 20 epochs using reshaped data that matches the model's input 

dimensions, with a batch size of 32. This retraining process enables the model to utilize more information from both original 

labelled data and pseudo-labelled data, ultimately improving accuracy and performance in identifying genomic patterns. 

 

3.4. Model Evaluation 

The next step involves evaluating the model's performance in predicting unseen data and assessing its generalization 

capability across a broader dataset. The model's evaluation is conducted by analyzing the accuracy trends for both training 

and validation data as the number of epochs increases. The expectation is that, as training progresses, the model will better 

recognize patterns in the training data and generalize them effectively to the validation data. In this study, the evaluation is 

performed using the training history obtained through the model.fit() method, where training accuracy and validation 

accuracy are extracted from history. history['accuracy'] and history. history['val_accuracy'], respectively. The accuracy data 

is then plotted against the number of epochs to observe the model’s learning trends. This approach systematically analyzes 

the model’s performance, allowing for the identification of potential overfitting or underfitting issues that could impact its 

generalization to new data. 
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Figure 4. 

Training and Validation Accuracy Graph. 

 

Figure 4 illustrates the gradual increase in training accuracy from 20.27% at epoch 1 to 85.41% at epoch 50, while 

validation accuracy follows a similar trend, starting at 25.57% in epoch 1 and reaching 80.67% at epoch 50. By epoch 10, 

training accuracy reaches 42.44%, while validation accuracy is at 45.36%, indicating that the model has begun to effectively 

learn patterns within the data. At epoch 30, training accuracy reaches 69.98%, with validation accuracy at 72.15%, 

signifying model stability. Despite minor fluctuations in validation accuracy, the overall trend continues to rise without 

clear signs of overfitting, as validation accuracy remains aligned with training accuracy. 

Following the accuracy evaluation, further assessment is conducted using the ROC Curve and AUC to measure the 

model's ability to differentiate between classes. The ROC Curve examines the relationship between the True Positive Rate 

(TPR) and the False Positive Rate (FPR) across various classification thresholds, while AUC quantifies how well the model 

distinguishes between classes. In this study, AUC calculation involves first binarizing labels using label_binarize(), making 

it applicable to multi-class classification. The AUC score is then computed using roc_auc_score() with a one-vs-rest (OVR) 

approach, allowing a comprehensive evaluation of the model's performance in distinguishing each class. This analysis 

provides deeper insights into model prediction quality beyond accuracy alone, helping to identify areas for further 

improvement. 

 

 
Figure 5. 

Initial Results of the ROC Curve Analysis. 
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Figure 5 illustrates that the model demonstrates strong classification capability, with AUC values ranging from 0.94 to 

0.99 for each class. A higher AUC value indicates better differentiation between positive and negative classes. The ROC 

curve mostly lies near the upper-left corner, signifying a high True Positive Rate (TPR) and a low False Positive Rate 

(FPR). This suggests that the model effectively classifies samples with minimal errors, although slight variations in 

performance across different classes are observed. 

While the ROC Curve and high AUC values indicate strong classification performance, additional evaluation is 

conducted through the Loss Curve and Accuracy Curve to ensure training stability and prevent overfitting. The Loss Curve 

tracks changes in loss values during training and validation, while the Accuracy Curve displays accuracy trends for both 

datasets. These evaluations utilize training history data, including train_loss, val_loss, train_acc, and val_acc, with the 

optimal epoch determined using np.argmin(val_loss) + 1. This analysis ensures that the model is assessed not only based 

on classification performance but also on the stability of its learning process. 

 

 
Figure 6. 

Loss and Accuracy Curves. 

 

Analyzing Figure 6 allows us to assess whether the model experiences overfitting. Based on the Loss Curve and 

Accuracy Curve, the model demonstrates a stable learning trend, with a decreasing loss and increasing accuracy as the 

number of epochs progresses. The optimal epoch is determined at epoch 50, where the validation loss reaches 0.5550 and 

the validation accuracy reaches 0.8067. The accuracy curve indicates a gradual improvement in performance, while the loss 

curve shows that the model successfully minimizes errors. The alignment between training and validation loss, as well as 

training and validation accuracy, suggests that the model does not suffer from overfitting and generalizes well to validation 

data. 

Following the evaluation through the Loss Curve and Accuracy Curve, a Precision-Recall Curve analysis is conducted 

to assess the model’s ability to handle imbalanced datasets. Accuracy alone is insufficient to determine whether the model 

effectively classifies minority classes. The Precision-Recall Curve illustrates the trade-off between precision and recall 

across different classification thresholds, while Average Precision (AP)—calculated as the area under the curve—evaluates 

the balance between the two. Using precision_recall_curve() and average_precision_score(), this evaluation helps 

determine whether the model accurately identifies classes with fewer samples. 
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Figure 7. 

Precision-Recall Curve Analysis Result. 

 

Figure 7 shows that the Average Precision (AP) values range between 0.58 and 0.80. Classes with higher AP values, 

such as class 5 (AP = 0.80) and class 6 (AP = 0.78), demonstrate better precision retention as recall increases, indicating 

that the model is more consistent in identifying samples from these classes. Conversely, class 4 (AP = 0.58) exhibits lower 

performance, suggesting that the model struggles to maintain precision as recall increases. Overall, higher AP values 

indicate that the model effectively manages the trade-off between precision and recall for specific classes. 

The discussion of these results highlights the effectiveness of the RNN-LSTM model with pseudo-labeling in 

improving chimpanzee DNA sequence classification accuracy, demonstrating its ability to achieve high performance 

despite data imbalance. The model's stability, indicated by converging accuracy and loss curves, as well as a well-balanced 

precision-recall curve, confirms its reliability in genetic pattern recognition. Compared to traditional CNN-based methods, 

which are more susceptible to noise, the semi-supervised learning approach successfully utilizes unlabeled data to enhance 

generalization. The integration of LSTM, pseudo-labeling, and L1 Regularization has proven to be a valuable strategy in 

genomic classification tasks. These findings emphasize the model's potential applications in bioinformatics and healthcare, 

particularly in disease-related genetic pattern identification, evolutionary studies, and gene-based therapies. Additionally, 

the proposed approach can be extended to other species’ genomic studies with limited labeled data, contributing to global 

health advancements through artificial intelligence-driven genomic research, aligning with the Sustainable Development 

Goals (SDGs). 

 

4. Conclusion 
This study implemented an RNN-LSTM model with Pseudo-Labelling to classify chimpanzee DNA sequences 

obtained from Kaggle and the Ensemble Genome Browser. The dataset included labeled DNA sequences categorized into 

various gene families, such as G protein-coupled receptors, tyrosine kinases, and others. Pseudo-Labelling was applied to 

utilize unlabeled data by predicting its class probabilities using the initial model and incorporating them into training to 

enhance model generalization. Model evaluation demonstrated strong performance in recognizing genetic patterns. Training 

accuracy increased from 20.27% at epoch 1 to 85.41% at epoch 50, while validation accuracy followed a similar trend, 

rising from 25.57% to 80.67%. At epoch 10, training accuracy reached 42.44%, and validation accuracy was 45.36%, 

indicating that the model had started learning meaningful patterns. By epoch 30, training accuracy had reached 69.98%, 

and validation accuracy was 72.15%, signifying model stability. Despite minor fluctuations in validation accuracy, the 

overall trend continued to rise, with no clear signs of overfitting. The ROC curve confirmed strong classification capability, 

with AUC values ranging from 0.94 to 0.99, indicating that the model effectively differentiates between positive and 

negative classes with minimal error. The loss and accuracy curves demonstrated stable learning behavior, with validation 

loss reaching 0.5550 at epoch 50, reinforcing that the model successfully minimizes errors while maintaining generalization. 

The Precision-Recall Curve analysis showed that the Average Precision (AP) values ranged between 0.58 and 0.80, with 

higher AP values in certain classes (e.g., class 5 at 0.80 and class 6 at 0.78), demonstrating better precision retention as 

recall increased. Conversely, lower AP values (e.g., class 4 at 0.58) suggested challenges in maintaining precision. Overall, 

the results indicate that the combination of RNN-LSTM and Pseudo-Labelling enhances classification accuracy, improves 

generalization, and effectively handles imbalanced datasets. This approach has significant potential for genetic pattern 

identification in DNA sequences, especially when labeled data is scarce, contributing to advancements in bioinformatics, 

disease-related genetic research, evolutionary studies, and personalized medicine. 
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