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Abstract 

The research paper explores the diverse factors that influence students' behavioral intentions to adopt OpenAI technologies. 

Utilizing a comprehensive methodology, the study surveyed 509 participants from various academic levels through both 

paper and online questionnaires. Structural Equation Modeling was employed for data analysis. The key determinants 

analyzed include effort expectancy, performance expectancy, social influence, facilitating conditions, hedonic motivation, 

price value, habit, perceived risk, and trust. Gender was also considered a potential moderating factor. The findings 

underscore the pivotal roles of trust, perceived performance benefits, and facilitating conditions in promoting the adoption of 

OpenAI among students. The study found strong positive correlations between these factors and students' intentions to use 

OpenAI technologies. Despite examining gender as a moderating factor, it did not significantly impact the relationship 

between these determinants and behavioral intention, indicating that these factors influence students' intentions similarly 

across genders. These insights are crucial for educators and policymakers who aim to foster OpenAI adoption, as they 

highlight the importance of building trust, demonstrating performance benefits, and ensuring supportive conditions. By 

addressing these areas, efforts can be more effectively directed towards promoting future-ready learning environments that 

integrate OpenAI technologies. 
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1. Introduction 

In the contemporary educational landscape, artificial intelligence (AI) is revolutionizing traditional teaching methods, 

with OpenAI leading the development of advanced AI technologies [1-3]. OpenAI's platforms, such as ChatGPT, Google 

Bard, and Microsoft's AI-powered Bing, are pivotal in creating personalized instruction, automated evaluation, and intelligent 

learning environments [4-7]. 

However, AI's rapid growth in education requires understanding its adoption dynamics, ethical implications, and 

pedagogical impacts [8, 9]. Acceptance of AI among students depends on factors like performance expectancy, effort 

expectancy, perceived ease of use, and social influence [10-13]. Ethical considerations, including equitable access, 

algorithmic fairness, and data privacy, are critical [14]. 

This study aims to analyze the adoption of OpenAI's technologies, such as ChatGPT and Google Bard, among students 

using the Unified Theory of Acceptance and Use of Technology 2 (UTAUT 2) model. It seeks to understand the factors 

influencing students' attitudes towards AI-powered educational tools, providing insights for developers, educators, and 

policymakers [15]. By examining performance expectancy, effort expectancy, social influence, and facilitating conditions, 

this research aims to guide strategic interventions and policies to harness AI's potential while ensuring educational integrity 

and equity. 

 

2. Literature Review 
This study builds upon the UTAUT 2 model by Venkatesh et al. [16], aimed at comprehending technology adoption 

factors. UTAUT 2, an extension of UTAUT, delves into consumer technology acceptance [15], integrating insights from 

eight models. Unlike UTAUT's focus on organizational contexts [3, 17]. UTAUT 2 zooms into voluntary consumer behaviors 

[18, 19]. Research on student adoption of OpenAI's innovations uncovered various influencers: effort expectancy, 

performance expectancy, social influence, hedonic motivation, risk perception, trust, perceived risk, and price value [20]. 

This enhances comprehension of consumer technology uptake. 

 

2.1. Effort Expectancy  

Effort Expectancy (EE), defined as the perceived ease of using a technology, is a crucial predictor of user intention to 

adopt new technologies [21-23]. According to the UTAUT 2 model, factors such as prior experience, technical ability, 

technology complexity, and support availability influence effort expectancy. Studies have shown that greater perceived ease 

leads to higher adoption likelihood [24]. Recent studies on chatbot adoption highlight the significant role of effort expectancy 

[25]. For ChatGPT, a high level of perceived ease is likely to drive adoption and usage, emphasizing the need to understand 

and enhance effort expectancy [24, 26]. Thus, the hypothesis is: 

H1: Effort expectancy positively influences the behavioral intention to use OpenAI. 

 

2.2. Performance Expectancy  

Performance Expectancy (PE) refers to the belief that using a system will help attain gains in job performance [22, 23]. 

It is a significant predictor of behavioral intention [27]. Research indicates that performance expectancy is a crucial factor in 

user acceptance and usage, shaped by perceived usefulness, compatibility, and impact on job performance [26, 28, 29]. For 

ChatGPT, it denotes users' beliefs about the technology's ability to enhance task performance [3]. Thus, the hypothesis is: 

H2: Performance expectancy positively influences the behavioral intention to use OpenAI. 

 

2.3. Social Influence  

Social Influence (SI) includes the perceptions of friends, family, and experts, significantly affecting technology adoption. 

Positive social influence enhances perceptions of usefulness and ease of use while reducing perceived risks [22, 23, 26, 30]. 

Negative social influence can raise doubts about reliability and ethical concerns [31]. The rapid acceptance of ChatGPT 

highlights the role of social influence in its adoption [32, 33]. Thus, the hypothesis is: 

H3: Social influence positively influences the behavioral intention to use OpenAI. 

 

2.4. Facilitating Conditions  

Facilitating Conditions (FC) within the UTAUT model highlight the importance of perceptions regarding the presence 

of organizational and technical support structures necessary for technology adoption [23, 34]. For ChatGPT, facilitating 

conditions include access to necessary technological resources and technical assistance [35]. Research underscores the role 

of facilitating conditions in the adoption of technologies like chatbots [26, 30, 36]. Thus, the hypothesis is: 

H4: Facilitating conditions positively influence the behavioral intention to use OpenAI. 

2.5. Hedonic Motivation  

Hedonic Motivation (HM) refers to the intrinsic desire for enjoyment and pleasure derived from using a technology [22]. 

It significantly shapes students' intentions to adopt and use innovative technologies, influencing both initial acceptance and 

sustained engagement [37-39]. Thus, the hypothesis is: 

H5: Hedonic motivation positively influences the behavioral intention to use OpenAI. 

 

2.6. Price Value  

Price Value (PV) involves the perceived benefits relative to the cost of a product or service [16]. In student adoption 

dynamics, price value significantly influences intentions to adopt and utilize innovative technologies [40]. Understanding 
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students' perceptions of value relative to the price is crucial, especially for premium versions of OpenAI. Thus, the hypothesis 

is: 

H6: Price value positively influences the behavioral intention to use OpenAI. 

 

2.7. Habit  

Habit (H), defined as the degree of repetitiveness of behavior, influences behavioral intentions for adopting OpenAI [11, 

16, 41-43]. Thus, the hypothesis is: 

H7: Habit positively influences the behavioral intention to use OpenAI. 

 

2.8. Perceived Risk  

Perceived Risk (PR) involves individuals' subjective assessment of potential negative consequences or uncertainties 

associated with adopting new technology [44]. High perceived risks can act as barriers to adoption, leading to hesitation or 

resistance [45]. Mitigating perceived risks is essential for promoting technology acceptance [46, 47]. Thus, the hypothesis is: 

H8: Perceived risk negatively influences the behavioral intention to use OpenAI. 

 

2.9. Trust  

Trust (T) refers to the belief in the reliability, credibility, and integrity of a technology or its provider [48]. Trust 

significantly influences user acceptance and adoption [49, 50]. It mitigates concerns about privacy, security, and reliability 

[51]. Thus, the hypothesis is: 

H9: Trust positively influences the behavioral intention to use OpenAI. 

 

2.10. Behavioral Intention to Use  

Behavioral Intention to Use represents individuals' planned actions regarding innovation adoption, influenced by factors 

such as performance expectancy, effort expectancy, social influence, and facilitating conditions [22, 23]. Understanding these 

factors within the context of student adoption provides insights into technology acceptance dynamics in educational settings. 

This review emphasizes the importance of understanding technology adoption factors, particularly in educational 

contexts. Leveraging the UTAUT 2 model, the study explores determinants like effort expectancy, performance expectancy, 

social influence, facilitating conditions, hedonic motivation, habit, and price value [52]. It integrates trust and perceived risk 

to provide a nuanced understanding of technology adoption. Additionally, it examines gender's moderating effect on 

technology adoption behaviors, offering insights to enhance technology acceptance within educational environments. 

 

2.11. Research Gap 

Despite extensive research on behavioral intention determinants, there is a dearth of comprehensive studies that 

simultaneously examine multiple factors such as effort expectancy, performance expectancy, social influence, facilitating 

conditions, hedonic motivation, price value, habit, perceived risk, and trust. This gap persists despite isolated studies 

exploring some factors independently. Moreover, research integrating these factors into a unified framework remains scarce. 

Understanding gender differences in technology adoption is crucial, yet most studies focus solely on main effects without 

exploring gender's moderating role in these relationships. Additionally, while past research has examined direct effects, 

understanding underlying mechanisms, such as how perceived risk or trust influences decision-making processes, remains 

limited. Investigating these mediating mechanisms can provide deeper insights into the cognitive and emotional processes 

involved in technology adoption. Addressing these gaps can enhance theoretical models and practical strategies for 

technology acceptance, catering to diverse user needs effectively. 

 

3. Materials and Methods 
3.1. Participants and Procedures 

This study collected data from 580 youth studying in different courses ranging from undergraduate to doctoral degrees 

using the convenience sampling method. Prior to the distribution of the questionnaire, the purpose of this study was 

sufficiently explained to each individual. It was advised in advance to stop the survey immediately or replace it with an online 

survey, considering that the content and responses of the survey could be burdensome in that they reveal the individual’s 

perception and attitude toward the use of Open AI tools like ChatGPT, etc. Specifically, most of them individually responded 

through paper questionnaires, and 83 people responded via online surveys due to concerns about exposure to personal 

information and response content. Upon screening the responses for reliability, 67 copies were excluded, such that data from 

only 509 individuals were used for data analysis. According to the list-by-list deletion method suggested by DeSimone and 

Harms [53], questionnaires in which respondents omitted some responses or in which more than nine questions were 

consecutive were excluded from data collection. In particular, most of the excluded questionnaires had nine or more of the 

same responses in a row. The respondents consisted of 255 males (50.1%) and 254 females (49.9%). 

3.2. Measures 

The instrument for measurement was a questionnaire in which all questions, except for those about demographics, were 

measured using a 5-point Likert scale (1 = Strongly Disagree, 5 = Strongly Agree).  
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Table 1.  

Data statements. 

Determinant Code Statement 

Effort Expectancy 

EE1 Open-AI is easy to use. 

EE2 The use and functions of Open-AI are clear and understandable. 

EE3 Using Open-AI saves time and energy 

EE4 It is easy to understand the operations of Open-AI 

EE5 The operations of Open-AI are controllable 

Performance 

Expectancy 

PE1 It is convenient to make the learning experience more engaging for students. 

PE2 Open-Ai helps in speedy and better student outcomes and understanding. 

PE3 
The usage of Open-AI improves my efficiency in generating more innovative and 

creative study materials. 

PE4 
Open-AI is better than traditional methods and can contribute to a more personalized 

and adaptive learning experience 

PE5 Usage of Open-AI increases productivity 

Social Influence 

SI1 People who are important to me would recommend using an Open-AI 

SI2 My family members and friends use Open-AI 

SI3 My family and friends influenced me to use an Open-AI 

Facilitating Conditions 

FC1 The support required to use an Open-AI is adequate/adequately provided 

FC2 I have knowledge and internet facility to use an Open-AI 

FC3 The software and hardware required to use an Open-AI is easily accessible 

FC4 The Open-AI services are compatible with other technologies that I use 

FC5 
There is a dedicated support team or help desk available to assist users with any Open-

AI-related queries or challenges 

Hedonic Motivation 

HM1 It is fun to use Open-AI 

HM2 Using an Open-AI seems to be enjoyable 

HM3 It is comfortable to use Open-AI 

HM4 It gives me pleasure in using Open-AI 

Price Value 

PV1 The features offered in the upgraded subscription plan are worth the additional cost. 

PV2 I believe that the benefits gained from upgrading justify the increased subscription cost. 

PV3 I am willing to commit to a subscription upgrade for the long term. 

Habit 

H1 I use Open-AI on a regular basis in my daily curriculum activities. 

H2 I consistently incorporate Open-AI into various aspects of my educational tasks. 

H3 Using Open-AI has become a regular part of my learning routine. 

H4 I rely on Open-AI to assist me in generating creative and engaging educational content. 

Perceived Risk 

PR1 
I worry that Open-AI may not consistently deliver the desired level of performance in 

educational tasks. 

PR2 
I am concerned about the security of the data and information shared while using Open-

AI. 

PR3 
I am concerned about becoming too dependent on Open-AI, which could pose 

challenges if the technology faces issues or limitations. 

PR4 
I am concerned about potential ethical issues related to bias in Open-AI-generated 

content. 

Trust 

T1 
I trust that Open-AI's algorithms are designed with a high level of accuracy and 

reliability. 

T2 
I trust that Open-AI provides clear and transparent information about how its models 

operate and make decisions. 

T3 
I am confident that Open-AI considers the ethical implications of its technology in 

various applications, including education. 

T4 I trust that Open-AI has implemented effective measures to ensure the security 

Behavioural Intention 

BI1 I intend to use Open-AI in the near future. 

BI2 Given the opportunity, I plan to use Open-AI regularly. 

BI3 I see myself adopting Open-AI as part of my routine. 

 

4. Results and Discussion 
Objective 1: To analyze the impact of effort expectancy, performance expectancy, social influence, facilitating 

conditions, hedonic motivation, price value, habit, perceived risk, and trust on behavioral intention. 

A reliability analysis was conducted to assess scale accuracy, a crucial step toward achieving the stated objective. 
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Table 2.  

Reliability Statistics. 

Cronbach's Alpha N of Items 

0.974 40 

 

The reliability analysis given in Table 2 yielded a Cronbach's alpha coefficient of 0.974, indicating high internal 

consistency among the scale items. With 40 items in the scale, this high coefficient suggests strong reliability and precision 

in measuring the intended construct [54]. These findings assure confidence in the scale's accuracy and suitability for further 

use in achieving the research or project objectives. 

 
Table 3.  

Descriptive Statistics. 

 N Minimum Maximum Mean Std. Deviation 

EE1 509 1 5 3.18 1.325 

EE2 509 1 5 3.22 1.282 

EE3 509 1 5 3.25 1.270 

EE4 509 1 5 3.20 1.277 

EE5 509 1 5 3.18 1.302 

PE1 509 1 5 3.24 1.261 

PE2 509 1 5 3.33 1.237 

PE3 509 1 5 3.23 1.283 

PE4 509 1 5 3.20 1.293 

PE5 509 1 5 3.23 1.239 

SI1 509 1 5 3.23 1.267 

SI2 509 1 5 3.20 1.234 

SI3 509 1 5 3.21 1.287 

FC1 509 1 5 3.23 1.297 

FC2 509 1 5 3.26 1.274 

FC3 509 1 5 3.24 1.234 

FC4 509 1 5 3.26 1.249 

FC5 509 1 5 3.24 1.275 

HM1 509 1 5 3.22 1.234 

HM2 509 1 5 3.16 1.283 

HM3 509 1 5 3.23 1.269 

HM4 509 1 5 2.94 1.337 

PV1 509 1 5 3.03 1.306 

PV2 509 1 5 3.01 1.307 

PV3 509 1 5 3.06 1.270 

H1 509 1 5 3.06 1.247 

H2 509 1 5 3.04 1.295 

H3 509 1 5 3.10 1.274 

H4 509 1 5 3.06 1.327 

PR1 509 1 5 3.08 1.301 

PR2 509 1 5 3.05 1.333 

PR3 509 1 5 2.99 1.297 

PR4 509 1 5 3.03 1.295 

T1 509 1 5 3.00 1.327 

T2 509 1 5 3.03 1.353 

T3 509 1 5 3.06 1.343 

T4 509 1 5 2.97 1.308 

BI1 509 1 5 2.96 1.331 

BI2 509 1 5 2.99 1.323 

BI3 509 1 5 2.91 1.329 

Valid N (listwise) 509     

 

The descriptive statistics in Table 3 reveal the distribution of variables related to effort expectancy (EE), performance 

expectancy (PE), social influence (SI), facilitating conditions (FC), hedonic motivation (HM), price value (PV), habit (H), 

perceived risk (PR), trust (T), and behavioral intention (BI). The means for each variable range from approximately 3 to 3.33, 

suggesting moderate to slightly above-moderate levels across the constructs [55]. Standard deviations range from about 1.23 

to 1.34, indicating variability within each construct [56]. These statistics provide insight into the central tendency and 

dispersion of the data, laying a foundation for further analysis of their relationships and impact on behavioral intention [57]. 
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Table 4.  

Correlations. 

 EE PE SI FC HM PV H PR T BI 

EE Pearson Correlation 1 0.877** 0.855** 0.884** 0.842** 0.537** 0.565** 0.539** 0.604** 0.543** 

Sig. (2-tailed)  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

N 509 509 509 509 509 509 509 509 509 509 

PE Pearson Correlation 0.877** 1 0.841** 0.881** 0.851** 0.559** 0.571** 0.562** 0.636** 0.519** 

Sig. (2-tailed) 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

N 509 509 509 509 509 509 509 509 509 509 

SI Pearson Correlation 0.855** 0.841** 1 0.847** 0.794** 0.504** 0.518** 0.496** 0.558** 0.474** 

Sig. (2-tailed) 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

N 509 509 509 509 509 509 509 509 509 509 

FC Pearson Correlation 0.884** 0.881** 0.847** 1 0.846** 0.547** 0.555** 0.545** 0.609** 0.531** 

Sig. (2-tailed) 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

N 509 509 509 509 509 509 509 509 509 509 

HM Pearson Correlation 0.842** 0.851** 0.794** 0.846** 1 0.656** 0.689** 0.679** 0.715** 0.571** 

Sig. (2-tailed) 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 

N 509 509 509 509 509 509 509 509 509 509 

PV Pearson Correlation 0.537** 0.559** 0.504** 0.547** 0.656** 1 0.837** 0.860** 0.818** 0.561** 

Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

N 509 509 509 509 509 509 509 509 509 509 

H Pearson Correlation 0.565** 0.571** 0.518** 0.555** 0.689** 0.837** 1 0.867** 0.828** 0.546** 

Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.000 

N 509 509 509 509 509 509 509 509 509 509 

PR Pearson Correlation 0.539** 0.562** 0.496** 0.545** 0.679** 0.860** 0.867** 1 0.839** 0.544** 

Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000 

N 509 509 509 509 509 509 509 509 509 509 

T Pearson Correlation 0.604** 0.636** 0.558** 0.609** 0.715** 0.818** 0.828** 0.839** 1 0.680** 

Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000 

N 509 509 509 509 509 509 509 509 509 509 

BI Pearson Correlation 0.543** 0.519** 0.474** 0.531** 0.571** 0.561** 0.546** 0.544** 0.680** 1 

Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  

N 509 509 509 509 509 509 509 509 509 509 
Note: **. Correlation is significant at the 0.01 level (2-tailed). 

 

The correlation table (Table 4) indicates strong positive associations between factors and behavioral intention (BI) 

towards OpenAI usage. Effort expectancy (EE), performance expectancy (PE), social influence (SI), facilitating conditions 

(FC), hedonic motivation (HM), price value (PV), habit (H), perceived risk (PR), and trust (T) all demonstrate significant 

correlations with BI, ranging from 0.519 to 0.680, all significant at the 0.01 level. This suggests that as these factors increase, 

so does the likelihood of users intending to engage with OpenAI [3]. These findings underscore the multifaceted nature of 

user intention formation, influenced by various factors such as ease of use, social norms, perceived benefits, and 

trustworthiness [58]. Understanding these correlations can guide strategies to enhance user adoption and acceptance of 

OpenAI technology [59]. 

 
Table 5.  

Model Summaryb. 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 0.707a 0.499 0.490 0.81192 
Note: a. Predictors: (Constant), T, SI, PV, HM, H, FC, PR, PE, EE 

b. Dependent Variable: BI 

 

The model summary given in Table 5 indicates that the predictors collectively account for a substantial portion of the 

variance in behavioral intention (BI) towards OpenAI, with an R-squared value of 0.499. This means that approximately 

49.9% of the variability in BI can be explained by the combination of predictors included in the model. The adjusted R-

squared, which accounts for the number of predictors in the model, is 0.490. The standard error of the estimate, measuring 

the average difference between the observed and predicted BI values, is 0.81192. The model includes predictors such as trust 

(T), social influence (SI), price value (PV), hedonic motivation (HM), habit (H), facilitating conditions (FC), perceived risk 

(PR), performance expectancy (PE), and effort expectancy (EE) [60]. These results suggest that these factors collectively 

contribute to understanding and predicting behavioral intention towards using OpenAI [61]. 
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Table 6.  

ANOVAa. 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 328.206 9 36.467 55.319 0.000b 

Residual 328.947 499 0.659   

Total 657.153 508    
Note: a. Dependent Variable: BI 
b. Predictors: (Constant), T, SI, PV, HM, H, FC, PR, PE, EE 

 

Table 6 demonstrates significant results, indicating that the predictors collectively contribute to explaining the variance 

in behavioral intention (BI) towards OpenAI. The regression model accounts for a substantial portion of the variance, as 

evidenced by the large F-value of 55.319 (p < 0.001). This suggests that the relationship between the predictors and BI is 

statistically significant. The sum of squares for the regression model is 328.206, with 9 degrees of freedom, resulting in a 

mean square value of 36.467. In contrast, the residual sum of squares is 328.947, with 499 degrees of freedom. The overall 

model provides a strong fit to the data, underscoring the importance of the included predictors in explaining variability in BI 

towards OpenAI usage [62]. 

 

 
Figure 1.  

Charts of the Study. 

 

The histogram displaying a bell-shaped curve in Figure 1 suggests that the distribution of data points is approximately 

normal, indicating that the data is symmetrically distributed around the mean [63]. The normal P-P plot of regression 

standardized residuals showing a straight line suggests that the residuals are normally distributed, further validating the 

assumption of normality in the data [64]. Lastly, the scatterplot with scattered dots illustrates the relationship between two 

variables [65]. Overall, these visualizations aid in assessing the assumptions and relationships within the data, crucial for 

accurate statistical analysis and interpretation [66]. 

 

4.1. SEM Model 

After performing regression analysis on SPSS, regression analysis using AMOS software was run. The results are shown 

as in Figure 2. 
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Figure 2.  

SEM Model of the Study. 

 
Table 7.  

Regression Weights: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label 

HM4 <--- HM. 1.000     

HM3 <--- HM. 1.214 0.085 14.243 ***  

HM2 <--- HM. 1.246 0.087 14.385 ***  

HM1 <--- HM. 1.140 0.082 13.906 ***  

T4 <--- T. 1.000     

T3 <--- T. 1.266 0.084 14.997 ***  

T2 <--- T. 1.265 0.085 14.911 ***  

T1 <--- T. 1.275 0.084 15.221 ***  

PE5 <--- PE. 1.000     

PE4 <--- PE. 1.083 0.057 19.121 ***  

PE3 <--- PE. 1.080 0.056 19.242 ***  

PE2 <--- PE. 1.014 0.054 18.638 ***  

PE1 <--- PE. 1.103 0.055 20.151 ***  

H4 <--- H. 1.000     

H3 <--- H. .920 0.047 19.735 ***  

H2 <--- H. .943 0.047 19.956 ***  

H1 <--- H. .918 0.045 20.238 ***  

PR4 <--- PR. 1.000     

PR3 <--- PR. 1.014 0.050 20.193 ***  

PR2 <--- PR. 1.059 0.051 20.634 ***  

PR1 <--- PR. 1.010 0.050 20.007 ***  

EE1 <--- EE. 1.000     

EE2 <--- EE. 0.942 0.046 20.397 ***  

EE3 <--- EE. 0.949 0.045 20.875 ***  

EE4 <--- EE. 0.933 0.046 20.230 ***  

EE5 <--- EE. .954 0.047 20.320 ***  

SI1 <--- SI. 1.000     

SI2 <--- SI. 1.013 0.053 19.219 ***  

SI3 <--- SI. 1.020 0.055 18.423 ***  

PV3 <--- PV. 1.000     

PV2 <--- PV. 1.013 0.050 20.378 ***  

PV1 <--- PV. 1.039 0.049 21.105 ***  

FC5 <--- FC. 1.000     

FC4 <--- FC. 0.952 0.049 19.581 ***  

FC3 <--- FC. 0.969 0.048 20.359 ***  

FC2 <--- FC. 0.975 0.050 19.681 ***  

FC1 <--- FC. 0.990 0.050 19.615 ***  

BI1 <--- BI. 1.000     

BI2 <--- BI. 0.983 0.055 17.783 ***  
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   Estimate S.E. C.R. P Label 

BI3 <--- BI. 0 .909 0.055 16.387 ***  

 

Table 7 from the SEM analysis using AMOS reveals the strength and direction of relationships between latent and 

observed variables. For hedonic motivation (HM), all observed variables (HM1, HM2, HM3, HM4) have strong positive 

regression weights, with HM4 being the strongest indicator (weight = 1.000). Trust (T) indicators (T1, T2, T3, T4) also show 

strong positive weights, with T1 being the highest (weight = 1.275). Other constructs like performance expectancy (PE), 

habit (H), perceived risk (PR), effort expectancy (EE), social influence (SI), price value (PV), and facilitating conditions (FC) 

also exhibit significant positive weights. These results highlight the significant impact of these factors on behavioral intention 

towards using OpenAI Emon et al. [61], and provide insights for strategies to promote OpenAI adoption [67]. 

Objective 2: To analyze the moderating role of gender on the relationship between Effort Expectancy and Behavioral 

Intention. 

 

 
Figure 3.  

Direct and Indirect Model with Gender as Moderator on the relationship between Effort Expectancy and Behavioral Intention. 

 
Table 8.  

Regression Weights: (Group number 1 - Default model). 
   Estimate S.E. C.R. P Label 

ZBI <--- ZGender -0.122 0.117 -1.044 0.297  

ZBI <--- INTTERM_EE 0.095 0.069 1.383 0.167  

ZBI <--- ZEE 0.388 0.117 3.313 ***  

 

Table 8 and Figure 3 suggest that gender moderates the relationship between effort expectancy (EE) and behavioral 

intention (BI). The interaction term (INTTERM_EE) between gender and EE is not significant (p = 0.297), indicating a weak 

moderating effect. However, the direct effect of EE on BI (ZEE) is significant (p < 0.001), suggesting that EE positively 

influences BI. Overall, while gender appears to have a limited moderating role, effort expectancy significantly contributes to 

behavioral intention regardless of gender. These findings imply that efforts to enhance effort expectancy (EE) may positively 

impact behavioral intention (BI), irrespective of gender differences in this context [68]. 

Objective 3: To analyze the moderating role of gender on the relationship between social influence and behavioral 

intention. 

 

 
Figure 4.  

Direct and Indirect Model with Gender as Moderator on the relationship between Social Influence and Behavioral Intention. 
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Table 9.  

Regression Weights: (Group number 1 - Default model). 
   Estimate S.E. C.R. P Label 

ZBI <--- ZGender -0.050 0.123 -0.407 0.684  

ZBI <--- INTTERM_SI 0.050 0.072 0.683 0.494  

ZBI <--- ZSI 0.391 0.125 3.139 0.002  

 

The regression weights given in Table 9 indicate that gender does not significantly moderate the relationship between 

social influence (SI) and behavioral intention (BI). The interaction term (INTTERM_SI) between gender and SI is not 

significant (p = 0.494) as shown in Figure 4, suggesting no substantial moderating effect. However, the direct effect of SI on 

BI (ZSI) is significant (p = 0.002), indicating that SI positively influences BI regardless of gender. Despite gender not exerting 

a moderating influence, social influence remains a significant predictor of behavioral intention. These results imply that 

enhancing social influence can positively impact BI, irrespective of gender differences in this context [69]. 

Objective 4: To analyze the moderating role of gender on the relationship between Price Value and Behavioral Intention. 

 

 
Figure 5.  

Direct and Indirect Model with Gender as Moderator on the relationship between Price Value and Behavioral Intention 

 
Table 10.  

Regression Weights: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label 

ZBI <--- ZGender 0.127 0.105 1.208 0.227  

ZBI <--- INTTERM_PV -0.051 0.065 -0.790 0.430  

ZBI <--- ZPV 0.650 0.118 5.521 ***  

 

Table 10 indicates that gender does not significantly moderate the relationship between price value (PV) and behavioral 

intention (BI). The interaction term (INTTERM_PV) between gender and PV is not significant (p = 0.430), suggesting no 

substantial moderating effect. However, the direct effect of PV on BI (ZPV) is significant (p < 0.001), indicating that PV 

positively influences BI regardless of gender. Despite gender not exerting a moderating influence, price value remains a 

significant predictor of behavioral intention. These results imply that enhancing perceived value for the price can positively 

impact BI, irrespective of gender differences in this context [70]. 

Objective 5: To analyze the moderating role of gender in the relationship between facilitating conditions and behavioral 

intention. 

 
Figure 6.  

Direct and Indirect Model with Gender as Moderator on the relationship between Facilitating Conditions and Behavioral Intention. 
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Table 11.  

Regression Weights: (Group number 1 - Default model). 
   Estimate S.E. C.R. P Label 

ZBI <--- ZGender -0.060 0.122 -0.488 0.625  

ZBI <--- INTTERM_FC 0.063 0.072 0.876 0.381  

ZBI <--- ZFC 0.431 0.119 3.620 ***  

 

Table 11 results suggest that gender does not significantly moderate the relationship between facilitating conditions (FC) 

and behavioral intention (BI). The interaction term (INTTERM_FC) between gender and FC is not significant (p = 0.381), 

indicating no substantial moderating effect. However, the direct effect of FC on BI (ZFC) is significant (p < 0.001), suggesting 

that FC positively influences BI regardless of gender. Despite gender not exerting a moderating influence, facilitating 

conditions remain a significant predictor of behavioral intention. These findings imply that improving facilitating conditions 

can positively impact BI, irrespective of gender differences in this context [71]. 

Objective 6: To analyze the moderating role of gender on the relationship between perceived risk and behavioral 

intention. 

 

 
Figure 7.  

Direct and Indirect Model with Gender as Moderator on the relationship between Perceived Risk and Behavioral Intention. 

 
Table 12.  

Regression Weights: (Group number 1 - Default model). 
   Estimate S.E. C.R. P Label 

ZBI <--- ZGender 0.082 0.108 0.759 0.448  

ZBI <--- INTTERM_PR -0.023 0.067 -0.351 0.725  

ZBI <--- ZPR 0.582 0.116 5.006 ***  

 

Table 12 results indicate that gender does not significantly moderate the relationship between perceived risk (PR) and 

behavioral intention (BI). The interaction term (INTTERM_PR) between gender and PR is not significant (p = 0.725), 

suggesting no substantial moderating effect. However, the direct effect of PR on BI (ZPR) is significant (p < 0.001), indicating 

that PR positively influences BI regardless of gender. Despite gender not exerting a moderating influence, perceived risk 

remains a significant predictor of behavioral intention. These results imply that mitigating perceived risks can positively 

impact BI, irrespective of gender differences in this context [72].  

Objective 7: To analyze the moderating role of gender on the relationship between habit and behavioral intention. 

 

 
Figure 8.  

Direct and Indirect Model with Gender as Moderator on the relationship between Habit and Behavioral Intention. 
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Table 13.  

Regression Weights: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label 

ZBI <--- ZGender 0.027 0.111 0.239 0.811  

ZBI <--- INTTERM_H 0.011 0.069 0.161 0.872  

ZBI <--- ZH 0.528 0.116 4.540 ***  

 

Table 13 suggests that gender does not significantly moderate the relationship between habit (H) and behavioral intention 

(BI). The interaction term (INTTERM_H) between gender and H is not significant (p = 0.872), indicating no substantial 

moderating effect. However, the direct effect of H on BI (ZH) is significant (p < 0.001), suggesting that habit positively 

influences BI regardless of gender. Despite gender not exerting a moderating influence, habit remains a significant predictor 

of behavioral intention. These findings imply that reinforcing habitual behavior can positively impact BI, irrespective of 

gender differences in this context [73]. 

Objective 8: To analyze the moderating role of gender on the relationship between Performance Expectancy and 

Behavioral Intention. 

 

 
Figure 9.  

Direct and Indirect Model with Gender as Moderator on the relationship between Performance Expectancy and Behavioral Intention 

 
Table 14.  

Regression Weights: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label 

ZBI <--- ZGender 0.014 0.123 0.112 0.911  

ZBI <--- INTTERM_PE 0.016 0.072 0.221 0.825  

ZBI <--- ZPE 0.493 0.120 4.099 ***  

 

Table 14 indicates that gender does not significantly moderate the relationship between performance expectancy (PE) 

and behavioral intention (BI). The interaction term (INTTERM_PE) between gender and PE is not significant (p = 0.825), 

suggesting no substantial moderating effect. However, the direct effect of PE on BI (ZPE) is significant (p < 0.001), indicating 

that PE positively influences BI regardless of gender. Despite gender not exerting a moderating influence, performance 

expectancy remains a significant predictor of behavioral intention. These results imply that enhancing perceived performance 

outcomes can positively impact BI, irrespective of gender differences in this context [74]. 

Objective 9: To analyze the moderating role of gender on the relationship between trust and behavioral intention. 
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Figure 10.  

Direct and Indirect Model with Gender as Moderator on the relationship between Trust and Behavioral Intention 

 
Table 15.  

Regression Weights: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label 

ZBI <--- ZGender 0.069 0.097 0.714 0.476  

ZBI <--- INTTERM_T -0.004 0.060 -0.066 0.947  

ZBI <--- ZT 0.687 0.100 6.839 ***  

 

Table 15 suggests that gender does not significantly moderate the relationship between trust (T) and behavioral intention 

(BI). The interaction term (INTTERM_T) between gender and T is not significant (p = 0.947), indicating no substantial 

moderating effect. However, the direct effect of T on BI (ZT) is significant (p < 0.001), suggesting that trust positively 

influences BI regardless of gender. Despite gender not exerting a moderating influence, trust remains a significant predictor 

of behavioral intention. These findings imply that fostering trust in a context can positively impact BI, irrespective of gender 

differences in this relationship [75]. 

Objective 10: To analyze the moderating role of gender in the relationship between hedonic motivation and behavioral 

intention. 

 

   
Figure 11.  

Direct and Indirect Model with Gender as Moderator on the relationship between Hedonic Motivation and Behavioral Intention. 

 
Table 16.  

Regression Weights: (Group number 1 - Default model). 
   Estimate S.E. C.R. P Label 

ZBI <--- ZGender 0.000 0.118 0.002 0.998  

ZBI <--- INTTERM_HM 0.028 0.072 0.388 0.698  

ZBI <--- ZHM 0.528 0.115 4.572 ***  

 

Table 16 indicates that gender does not significantly moderate the relationship between hedonic motivation (HM) and 

behavioral intention (BI). The interaction term (INTTERM_HM) between gender and HM is not significant (p = 0.698), 

suggesting no substantial moderating effect. However, the direct effect of HM on BI (ZHM) is significant (p < 0.001), 

indicating that hedonic motivation positively influences BI regardless of gender. Despite gender not exerting a moderating 

influence, hedonic motivation remains a significant predictor of behavioral intention. These results imply that stimulating 

hedonic motives can positively impact BI, irrespective of gender differences in this relationship [72]. 
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5. Conclusion  
The research paper investigates the factors influencing students' behavioral intentions to adopt OpenAI technology, 

focusing on determinants such as effort expectancy, performance expectancy, social influence, facilitating conditions, 

hedonic motivation, price value, habit, perceived risk, and trust, while also examining gender as a potential moderating factor. 

 

5.1. Reliability and Descriptive Analysis 

High internal consistency among scale items was found, ensuring accurate measurements. Descriptive statistics indicated 

moderate to slightly above-moderate levels across constructs, setting the stage for further analysis. 

 

5.2. Correlation Analysis 

Strong positive correlations between the factors and behavioral intention were observed, highlighting their significant 

impact on students' intentions to engage with OpenAI. All examined factors exhibited significant correlations with behavioral 

intention. 

 

5.3. Regression Analysis 

The regression model explained a substantial portion of the variance in behavioral intention towards OpenAI, with trust, 

social influence, price value, hedonic motivation, habit, facilitating conditions, perceived risk, performance expectancy, and 

effort expectancy significantly contributing to this variance. These findings suggest that these factors collectively help predict 

behavioral intentions towards OpenAI. 

 

5.4. Moderating Role of Gender 

Gender did not significantly moderate the relationships between determinants and behavioral intention. The examined 

factors consistently influenced behavioral intention positively, irrespective of gender. 

The study highlights the complex nature of user intention formation towards adopting OpenAI technology. Trust, 

perceived performance benefits, and facilitating conditions are critical determinants in promoting OpenAI adoption. The 

findings suggest that efforts to build trust, ensure performance benefits, and enhance facilitating conditions are vital for 

fostering user acceptance and intention to use OpenAI. These insights are valuable for educators and policymakers aiming to 

promote OpenAI adoption among students and support future-ready learning practices. 

 

6. Implications 
In the contemporary educational landscape, artificial intelligence (AI) is revolutionizing traditional teaching methods, 

with OpenAI leading the development of advanced AI technologies [1-3]. OpenAI's platforms, such as ChatGPT, Google 

Bard, and Microsoft's AI-powered Bing, are pivotal in creating personalized instruction, automated evaluation, and intelligent 

learning environments [5-7]. 

The adoption of AI-powered educational tools is surging. UNESCO reports that AI skills in India exceed the global 

average, highlighting AI literacy's growing role in education [4, 76]. ChatGPT's rapid adoption, reaching over 100 million 

users in months, exemplifies the widespread appeal of AI in education [77]. AI's ability to meet individual learning needs, 

enhance engagement, and optimize academic outcomes underscores its educational value [75, 78]. AI also promises to 

democratize access to quality education, reduce biases, and enhance learning through adaptive, inclusive methods [76]. 

However, AI's rapid growth in education requires understanding its adoption dynamics, ethical implications, and 

pedagogical impacts [8, 9]. Acceptance of AI among students depends on factors like performance expectancy, effort 

expectancy, perceived ease of use, and social influence [10-13]. Ethical considerations, including equitable access, 

algorithmic fairness, and data privacy, are critical[14]. 

This study aims to analyze the adoption of OpenAI's technologies, such as ChatGPT and Google Bard, among students 

using the Unified Theory of Acceptance and Use of Technology 2 (UTAUT 2) model. It seeks to understand the factors 

influencing students' attitudes towards AI-powered educational tools, providing insights for developers, educators, and 

policymakers [15]. By examining performance expectancy, effort expectancy, social influence, and facilitating conditions, 

this research aims to guide strategic interventions and policies to harness AI's potential while ensuring educational integrity 

and equity.  
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