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Abstract 

Producing high-quality camel milk powder requires precise control of vacuum sublimation drying parameters due to the 

product's sensitivity to thermal stress and oxidation. This study addresses the optimization of the drying process by integrating 

advanced machine learning (ML) techniques to predict optimal drying conditions. In this research, four ML algorithms were 

developed and evaluated: Logistic Regression, Random Forest, Decision Tree, and Extreme Gradient Boosting (XGBoost). 

Each algorithm was trained on detailed sensor data, including chamber temperatures, vacuum pressure, and milk thickness, 

with drying success defined by maintaining temperature deviations within ±5°C and completing drying cycles within 24 

hours. The XGBoost model exhibited the best performance, achieving an accuracy of 99.3%, precision and recall of 96.4%, 

and the highest F1-score. Temperature parameters, particularly in specific chamber locations, emerged as critical predictors 

of successful drying outcomes. By enabling accurate forecasting and real-time parameter adjustments, this ML-driven 

approach significantly enhances drying efficiency, product quality, and sustainability, offering substantial economic and 

logistical benefits, particularly for remote regions in Kazakhstan where camel milk production is prominent. 
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1. Introduction 

The growing demand for high-quality dairy products has led to the exploration of advanced drying techniques to preserve 

the nutritional integrity of milk. Among these, vacuum sublimation drying, also known as lyophilization, stands out for its 

ability to protect heat-sensitive nutrients, such as proteins, vitamins, and bioactive compounds. Camel milk, recognized for 

its rich nutritional profile and therapeutic properties, has gained significant attention for its potential in both the food industry 

and nutraceutical applications. However, the challenge remains in optimizing the drying process to maintain the bioactive 

properties of camel milk while ensuring efficiency and cost-effectiveness. 

This study addresses this challenge by applying machine learning (ML) techniques to optimize camel milk powder 

production's vacuum sublimation drying process. Traditional methods of drying optimization often rely on trial-and-error 

experimentation, which can be time-consuming and resource-intensive. In contrast, ML offers a more efficient approach by 

analyzing large datasets and predicting optimal drying parameters, thus reducing the need for extensive physical trials. 

In this research, we evaluate several ML algorithms, including Logistic Regression, Random Forest, Decision Tree, and 

Extreme Gradient Boosting (XGBoost), to identify the best approach for predicting drying success based on various process 

parameters. By examining key factors such as temperature, vacuum pressure, and milk thickness, the study provides valuable 

insights into how ML can enhance drying efficiency, product quality, and sustainability in camel milk powder production. 

In the following sections, we will review the relevant literature on vacuum sublimation drying and machine learning in 

food processing, present the experimental setup and methodology, and discuss the results and their implications for future 

improvements in drying technologies. 

 

2. Literature Review 
2.1. Overview of Vacuum Sublimation Drying (Lyophilization) 

Vacuum sublimation drying, or lyophilization, is a process widely used to remove moisture from products under low pressure, 

where ice transitions directly from solid to vapor, bypassing the liquid phase [1, 2]. Initially developed for pharmaceutical 

applications, this technique is highly valued for preserving heat-sensitive components such as proteins and vitamins, as well 

as maintaining the original taste, color, and aroma of products [3]. Over time, the use of lyophilization has expanded into the 

food industry, particularly for producing fruit, vegetable, and dairy powders [4, 5]. 

 

2.2. Importance of Parameter Control in Lyophilization 

Successful vacuum sublimation is heavily dependent on optimizing various parameters such as shelf temperature, 

vacuum pressure, temperature increase rates, and freezing modes. Slight deviations from the optimal conditions can lead to 

structural collapse and detrimental effects on the biological properties of the product [6, 7]. Research has shown that 

cryoprotectants, such as trehalose and mannitol, play a critical role in stabilizing proteins during the lyophilization process 

[8, 9], ensuring that their functional properties are retained. Additionally, while lyophilization is an energy- and time-intensive 

process, it provides superior quality powders compared to thermal drying methods, making it particularly beneficial for high-

value products like biologically active supplements [10, 11]. 

 

2.3. Camel Milk and Its Unique Nutritional Value 

Camel milk has gained significant attention due to its rich content of bioactive compounds such as lactoferrin, 

immunoglobulins, and insulin-like growth factors [12]. These proteins have demonstrated antidiabetic, anti-inflammatory, 

and immunomodulatory effects, but they are highly susceptible to degradation under traditional drying methods. 

Lyophilization has proven effective in preserving the structure of key proteins like caseins and whey proteins in camel milk, 

thus maintaining its nutritional and functional value [13]. 

 

2.4. Comparison of Drying Technologies 

Although lyophilization offers numerous advantages, other drying techniques, such as tray and spray drying, are also 

widely used in the food and pharmaceutical industries. Tray drying is simpler and more cost-effective but can lead to the 

oxidation of polyphenols, protein denaturation, and vitamin loss due to high thermal exposure [14, 15]. Spray drying, while 

highly productive, involves high air temperatures that can damage heat-sensitive components such as whey proteins [16, 17]. 

In the case of camel milk, these losses are undesirable, as they compromise the nutritional value of the final product [18]. 

 

2.5. The Role of Machine Learning in Drying Process Optimization 

Recent advancements in machine learning (ML) have introduced powerful tools for optimizing drying processes. ML 

algorithms analyze parameters such as temperature, pressure, and product composition to predict optimal drying conditions. 

By dynamically adjusting process variables based on real-time data, ML models help minimize the risk of thermal damage, 

improve energy efficiency, and enhance product quality [19, 20]. These models have shown great promise in predicting the 

residual moisture content and the preservation of bioactive compounds, making them a valuable asset in optimizing drying 

technologies, including lyophilization. 

 

2.6. Spray Freeze Drying and Hybrid Techniques 

In some cases, spray freeze-drying (SFD), a combination of spraying products into a cryogenic medium 

followed by lyophilization, is employed. This method, often used in the pharmaceutical industry for producing 

highly soluble powders, suffers from high energy consumption and equipment complexity, limiting its large-scale 
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application in food production [4]. Similarly, methods such as ultrasound or microwave-assisted drying, when 

used in combination with infrared heating, aim to speed up the moisture removal process but can lead to uneven 

drying or local overheating [17, 21]. 
 

2.7. Integration of Machine Learning with Lyophilization 

The key advantage of integrating ML with lyophilization technology is its ability to optimize drying across various 

methods, from tray to vacuum sublimation. ML systems can combine data on raw material structure, drying dynamics, 

and energy consumption, enabling more precise control of the process [22, 23]. For high-value products like camel milk, 

this integration helps ensure the preservation of bioactive substances while reducing processing time and resource use. 

 

2.8. Our Contribution 

Despite the established benefits of lyophilization, there remains a need for further optimization, particularly in the drying 

of high-value products like camel milk. Our research introduces an innovative approach that leverages machine learning to 

predict optimal drying conditions for camel milk, based on detailed experimental data from six trials. By training ML models 

on this data, we can identify the ideal parameters for shelf temperature, vacuum pressure, and freezing rate, reducing the need 

for labor-intensive trial-and-error adjustments. The result is a more efficient, resource-conserving method for producing high-

quality dry camel milk, preserving its bioactive components while minimizing energy consumption. 

 

3. Methodology 
3.1. System Architecture 

This section describes the architecture and description of the system. Figure 1 shows the overall process flowchart of 

vacuum freeze-drying, which consists of three main steps: PLC-based automatic control, process data collection and storage, 

and intelligent analysis using machine learning. 

 

 
Figure 1.  

Description of the architecture of the vacuum freeze-drying system technological process. 

 

In the first stage, the drying process is controlled by a programmable logic controller (PLC) that collects and processes 

input data from temperature and pressure sensors, which come in the form of analog signals ranging from 4 to 20 milliamps. 

Based on this data, the PLC automatically adjusts the unit's operating parameters—temperature, vacuum degree, and drying 

time—to ensure optimal conditions for moisture removal from the product. 

The operator interacts with the system in the second stage through the Human Machine Interface (HMI) panel. The HMI 

allows the operator to monitor current process parameters, receive fault notifications and warnings, and adjust setpoint 

settings. In parallel, data from sensors and equipment are continuously recorded into CSV files, which are stored on external 

media with FAT32 or NTFS file systems. 
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The accumulated data are intelligently analyzed at the third stage using machine learning algorithms. The main purpose 

of machine learning is to predict possible events and deviations in the drying process. The implementation of machine 

learning allows for the identification of potential problems in advance and corrects the process, minimizing the probability 

of negative consequences, as well as optimizing technological parameters, contributing to the improvement of quality and 

preservation of biologically active components in the finished product. 

 

 
Figure 2.  

Structural diagram of vacuum freeze-drying system. 

 

Figure 2 presents the scheme of the vacuum freeze dryer. It includes the main functional blocks: a drying chamber with 

trays for the material, a cooling system for pre-freezing, a vacuum pump to create low pressure, and a heating system to 

control the temperature inside the chamber. An important system element is the condensing unit, which condenses water 

vapor, preventing it from entering the vacuum pump and maintaining process efficiency. Temperature and pressure sensors 

transmit data to the PLC, which regulates the operation of all plant components. 

 

 
Figure 3.  

General view of the vacuum freeze dryer ZLGJ-300. 

 

Figure 3 presents the ZLGJ-300 freeze dryer, a vacuum freeze-drying equipment consisting of several components, each 

of which performs a specific function in the process of removing moisture from the material. The drying chamber is the main 

working volume of the unit where the samples are placed for drying. Inside the chamber are trays on which the material is 

distributed and thermal panels that provide heat for controlled sublimation. The condensation unit is designed for the 

condensation of water vapor released during sublimation. It prevents moisture from entering the vacuum pump, ensuring 

efficient operation of the entire system. The vacuum pump creates and maintains the required vacuum level in the drying 

chamber, facilitating the conversion of ice into vapor without intermediate transformation into liquid. The compressor is 
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responsible for cooling the condensing unit and maintaining the low temperature required for efficient condensation of water 

vapor. The heating system regulates the temperature of the shelves inside the drying chamber, providing gradual and 

controlled heating of the material for even moisture removal. The control valves are used to regulate air supply, system 

vacuuming, and condensate drainage, ensuring the correct functioning of all process steps. All elements of the system work 

together to ensure effective vacuum freeze-drying, which removes moisture from the material without destroying its structure 

and loss of useful properties. 

A set point is a target value that the system strives to reach during the process control. In the sublimation drying of camel 

milk, set points determine the temperature stages, ensuring a controlled heating and moisture removal process. Correctly 

setting the temperature regimes stabilizes the process and improves the quality of the final product by optimally removing 

moisture while preserving the structure of the milk. 

 

3.2. Experimental Description 

This section presents an analysis of several drying experiments, distinguishing between successful and unsuccessful 

cases. Successful drying processes are characterized by a consistent and smooth correlation between the predefined set points 

and actual temperature sensor readings. 

Figure 4 provides a detailed comparison between the defined set points and the measured temperature values from 

sensors installed within the drying chamber. At the initiation of the process, the temperature sharply decreases to 

approximately -50°C, signifying the freezing stage. Starting at 03:00 on April 14, a gradual temperature increase is observed, 

corresponding to the sublimation phase, where ice transitions directly to vapor without passing through the liquid phase. This 

experiment demonstrates a strong correlation between the set temperature values and their respective durations and the actual 

sensor data. In the concluding phase, the temperature successfully reaches and maintains a stable level of 50°C for a defined 

period, indicating effective and complete moisture removal from the product. 

 

 
Figure 4.  

Comparison of defined setpoints and actual temperature sensor readings during a successful drying process. 

 

Figure 5 illustrates the temperature regime of an unsuccessful drying process, demonstrating a similar dynamic 

temperature progression. During the initial stage, uniform cooling was observed; however, during the subsequent stepwise 

heating phase and transition between temperature setpoints, the actual sensor readings lagged behind the predefined values. 

These discrepancies may be attributed to heating inertia, duration of temperature steps, uneven heat distribution within the 

drying chamber, and the influence of vacuum pressure conditions. In the final stage of the drying process, although 

temperature readings stabilized, they remained consistently below the intended set points, indicating possible inadequacies 

in heat transfer efficiency and incomplete moisture removal. 
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Figure 5.  

Temperature profile demonstrating deviations between setpoints and sensor readings in an unsuccessful drying process. 

 

3.3. Dataset Preprocessing 

The dataset used in this study was collected from ten experimental trials of vacuum sublimation drying of camel milk. 

However, after filtering out the low-quality experiments, six trials were retained: three successful and three unsuccessful. 

Each experiment involved data collection from multiple sensors measuring temperatures in different parts of the chamber 

(temp_1 - temp_6), vacuum pressure levels, and cold trap indicators. Additionally, the thickness of the camel milk was taken 

into account. To assess the relationships between key process parameters, a correlation matrix was calculated. This analysis 

helps determine which variables have the most significant linear correlation with drying success. 

The success of the drying process was evaluated based on two main criteria. First, the temperature deviation threshold 

in the chamber (temp_1 - temp_6) was set to 5°C. If the deviation of any cell's temperature from the set temperature exceeded 

5°C at the end of each set, the process was considered unsuccessful. Second, the drying process was required to be completed 

within 24 hours. If the process exceeded this duration, it was also classified as unsuccessful. 
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Figure 6.  

Correlation Matrix of Key Parameters for Vacuum Sublimation Drying Process. 

 

Significant relationships are observed between the temperature parameters inside the chamber (temp_1 – temp_6), 

indicating the importance of maintaining a uniform temperature regime within the chamber. To ensure the reliability of the 

analysis, the dataset was preprocessed by removing missing values and duplicates. The data was then split into training (80%) 

and testing (20%) subsets for effective model evaluation. The temperature at different levels of the chamber (temp_1 – 

temp_6) exhibits varying degrees of correlation with the success of the process, with the most significant values observed for 

temp_3 (0.25) and temp_6 (0.26), confirming the influence of temperature distribution on the final product quality. These 

observations highlight the importance of controlling the temperature regime and maintaining stable pressure within the 

chamber to enhance the success of vacuum sublimation drying. 

 

3.4. Machine Learning Modeling 

Our approach to modeling the prediction of vacuum sublimation drying success involves testing a range of machine 

learning algorithms, employing rigorous evaluation metrics, and optimizing model hyperparameters using cross-validation 

and grid search. 

Four classical machine learning algorithms were chosen for this task: Extreme Gradient Boosting, Random Forest, 

Logistic Regression, and Decision Tree. 

 

 
Figure 7.  

Intelligent system for metallurgical process optimization. 
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3.4.1. Logistic Regression 

Logistic Regression – a simple yet interpretable statistical model used for binary classification. It assumes a linear 

relationship between input features and the probability of the positive class. The model predicts the probability that an 

observation belongs to a particular class (usually the positive class). The logistic function (sigmoid) is used to map predicted 

values to probabilities. The formula for logistic regression is: 

𝑝(𝑋) =  
1

1+𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑛𝑥𝑛
,                          (1)  

where P(x) represents the probability of the positive class given the input features 𝑥1, 𝑥2,...,𝑥3, 𝛽
0
 is the intercept term, 

and 𝛽
1
,𝛽

2
,...,𝛽

𝑛
 are the coefficients for the corresponding input features. The coefficients 𝛽

1
, 𝛽2,...,𝛽

𝑛
 determine the 

contribution of each feature to the final predicted probability, while 𝛽
0
 representing the bias or offset of the decision 

boundary. These coefficients provide insights into the model's decision-making process and the importance of each feature 

in predicting the target variable [24]. 

 

3.4.2. Random Forest 

Random Forest – an ensemble learning method that constructs multiple decision trees and aggregates their predictions. 

Each tree in the forest is trained on a random subset of the data, and its predictions are combined (usually by averaging or 

majority vote) to make the final prediction. Random Forest is robust against overfitting and captures complex relationships 

between features. The formula for Random Forest is: 

𝑦̂  =  
1

𝑇
∑ 𝑓𝑡(𝑥)

𝑇

𝑡=1

, 
(

2

) 

where 𝑦̂ is the final prediction of the model, T is the number of trees in the ensemble, and 𝑓𝑡(𝑥) refers to the prediction of 

the t-th for the input data x [25]. 

 

3.4.3. Decision Tree 

Decision Tree – A tree-based algorithm that splits the dataset into hierarchical decision rules. It is highly interpretable 

and effective for discovering key thresholds in drying conditions that determine process success. However, standalone 

decision trees are prone to overfitting, making them less generalizable compared to ensemble methods [26]. 

Trees are constructed by minimizing impurities at each node of the tree. At each step of the algorithm, the best feature 

and threshold are selected that minimize impurities in additional nodes. The formula for calculating Gini impurities: 

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑝𝑖
2

𝐶

𝑖=1

, 
(

3

) 

where D is the set of data in the node, C is several classes 𝑝𝑖  , and is the proportion of objects of class 𝑖 in the node 𝐷. 

The goal of a decision tree is to minimize the Gini impurity at each node when splitting data. The lower the Gini 

impurity, the "purer" the nodes are. 

The formula for calculating information (for classification using Entropy): 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) = − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝐶

𝑖=1

, 
(4

) 

where D is the set of data in the node, 𝑝𝑖  the probability that an element from the node 𝐷 belongs to class 𝑖. The algorithm 

selects features and thresholds that minimize entropy and thus make the nodes as homogeneous as possible. 

 

3.4.4. Extreme Gradient Boosting  

Extreme Gradient Boosting (XGBoost) – A powerful gradient boosting algorithm optimized for structured data and high 

performance. It sequentially builds decision trees, correcting errors made by previous models, making it ideal for capturing 

complex, nonlinear dependencies. XGBoost also incorporates regularization techniques to prevent overfitting and improve 

model generalization [27]. 

 The model update formula is: 

𝑦̂𝑡 = 𝑦̂𝑡−1 + 𝜂 ∗ 𝑓𝑡(𝑥) 
(5

) 

𝑦̂𝑡   is the prediction as step t,  𝑦̂𝑡−1 is the prediction from the previous step, 𝜂 is the learning rate, and 𝑓𝑡(𝑥) is the prediction 

from the t-th tree. 

The loss function with regularization is: 

𝐿(𝛩) = ∑ 𝐿(𝑦𝑖 , 𝑦̂𝑖)

𝑁

𝑖=1

+ ∑ 𝛺(𝑓𝑘)

𝐾

𝑘=1

 
(6

) 

Each model was trained to classify the drying process outcome based on experimental sensor data. The PT-100 

temperature sensor records the temperature conditions inside the drying chamber. Its platinum sensing element changes 

resistance in response to temperature, providing measurements from -200°C to +400°C. In the drying system, it monitors the 

heating of shelves and samples, transmitting data to a programmable logic controller that regulates the sublimation process. 
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Temperature fluctuations allow the drying conditions to be determined and possible deviations in the process to be recorded 

[28]. 

The ZJ-52T vacuum sensor measures the pressure inside the drying chamber in the range of 1×10 -1 to 1×105 Pa. It 

detects changes in the vacuum level, which affect the sublimation rate, and transmits the data to the control system. The 

vacuum pump adjusts the pressure according to the sensor readings, supporting the moisture removal process. The recording 

of pressure changes helps to detect leaks or insufficient sealing of the chamber [29]. 

To improve performance, hyperparameter tuning was conducted using grid search, while five-fold cross-validation 

ensured robust model evaluation. Additionally, feature scaling and preprocessing techniques were applied where necessary 

to optimize convergence and generalization. This systematic approach allows for an objective assessment of the most 

effective machine learning algorithm for predicting the success of vacuum sublimation drying. 

 

4.2. Evaluation Metrics 

To evaluate the performance of the models, the following metrics were chosen, namely: accuracy, precision, recall, and 

F1-score. 

 

4.2.1. Accuracy 

Accuracy – the proportion of correctly classified cases out of the total number of predictions. This metric provides a 

general measure of the model’s correctness but may be misleading in cases of class imbalance, where one class is significantly 

more frequent than another. In such scenarios, accuracy alone does not provide a full assessment of the model's performance. 

The formula for accuracy is as follows:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, 

(7

) 

 

4.5.2. Precision 

Precision – the proportion of correctly predicted successful cases among all instances classified as successful. This 

metric is important for evaluating the model's ability to avoid false positives. A high precision value indicates that the model 

has a low false positive rate. The formula for precision is as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 

(8

) 

 

3.5.3. Recall 

Recall – the proportion of actual positive cases (successful instances) that are correctly identified by the model. This 

metric measures the model's ability to capture all relevant positive cases. A high recall indicates that the model successfully 

identifies most of the positive cases, reducing the likelihood of missing important instances. The formula for recall is as 

follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 

(9

) 

 

3.5.4. F1-Score 

F1-score – the harmonic mean of precision and recall, providing a balanced evaluation of classification performance. 

This metric is especially valuable when there is a trade-off between precision and recall. It helps assess the model's overall 

reliability in distinguishing between successful and unsuccessful cases, ensuring that both false positives and false negatives 

are minimized. The formula for the F1-score is as follows: 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
, 

(1

0) 

 

3.5.5. Area Under the Curve 

The area under the curve (AUC) is a commonly used metric to evaluate the performance of classification models. It is 

calculated by plotting the true positive rate against the false positive rate at various threshold levels, forming the Receiver 

Operating Characteristic (ROC) curve. The AUC is then obtained by numerically integrating this curve, typically using the 

trapezoidal rule. This single scalar value reflects the model’s ability to distinguish between classes, with higher values 

indicating better discriminative performance. As such, AUC provides a robust and interpretable summary of classification 

effectiveness across all possible threshold settings. 

 

3.5.6. Confusion Matrix 

The confusion matrix is a useful tool for evaluating the performance of classification models. It provides a tabular 

summary of prediction results by comparing actual class labels with those predicted by the model. The matrix includes four 

key components: true positives, true negatives, false positives, and false negatives. These values offer detailed insight into 

how well the model distinguishes between classes and allow for the calculation of various performance metrics such as 

accuracy, precision, recall, and F1-score. One can identify specific patterns of misclassification and better understand the 

strengths and weaknesses of the model by analyzing the confusion matrix. 
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4. Results and Discussion 

4.1. Model Evaluation Results 

The analysis of machine learning models for predicting the success of the vacuum drying process shows varying levels 

of accuracy and efficiency among the tested algorithms. While XGBoost demonstrated the highest accuracy, other methods 

also performed well, except for logistic regression, which significantly lagged in all key metrics. 

The Random Forest model achieved 99.1% accuracy, along with high precision (96.3%), recall (94.5%), and F1-score 

(95.4%). These results indicate that the algorithm effectively classifies successful and unsuccessful drying processes with 

minimal errors. Due to its ensemble nature, the model is resistant to overfitting and can efficiently capture complex 

dependencies between process parameters. 

The Decision Tree model performed slightly worse than the Random Forest, achieving 98.9% accuracy with similarly 

high precision and recall scores of 94.5%. Despite its strong performance, decision trees are prone to overfitting, especially 

when dealing with small datasets. While this model provides interpretability and helps identify the most influential factors in 

the drying process, its predictive ability is slightly lower than that of ensemble methods. 

On the other hand, logistic regression was the least effective among all the tested algorithms. Its accuracy was 91.8%, 

with significantly lower precision (60.0%) and recall (38.2%) compared to the other models. This indicates that logistic 

regression struggles to accurately predict successful drying processes, leading to a high number of misclassifications. The 

primary limitation lies in the assumption of linear relationships between features, while the drying process likely follows 

complex, nonlinear dependencies that this model cannot capture effectively. 

Among all tested algorithms, XGBoost demonstrated the best performance, achieving 99.3% accuracy and the highest 

precision, recall, and F1-score, as seen in Table 1. This indicates that XGBoost is the most reliable model for classifying 

drying success, minimizing errors, and providing highly accurate predictions. Ensemble methods, such as Random Forest 

and XGBoost, proved to be particularly effective in this task due to their ability to capture intricate relationships between 

process parameters. In contrast, the decision tree lacks robustness, and logistic regression exhibited the lowest accuracy, 

making it the least suitable approach for this classification problem. All model performance results can be seen in in Table 1 

and Figure 8. 

 
Table 1.  

Performance of each model in predicting vacuum freeze-drying. 

Model Accuracy Precision Recall F1-score 

Logistic Regression 91.8% 60.0% 38.2% 46.7% 

Random Forest 99.1% 96.3% 94.5% 95.4% 

Decision Tree 98.9% 94.5% 94.5% 94.5% 

XGBoost 99.3% 96.4% 96.4% 96.4% 

 

 
Figure 8.  

Performance of each model in predicting vacuum freeze drying (Bar Chart). 
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Figure 9.  

ROC Curve for XGBoost Model: Performance in Classifying Successful and Unsuccessful Drying Processes. 

 

In Figure 9, we can see the ROC curve for the XGBoost model, which demonstrates its performance at different 

classification thresholds. The graph shows the True Positive Rate (TPR) on the y-axis and the False Positive Rate (FPR) on 

the x-axis. The blue and red lines represent the classifications of successful and unsuccessful drying processes, respectively. 

Both lines have an AUC (Area Under the Curve) = 1.00, indicating that the model perfectly classifies both classes 

without any errors. This is reflected in the sharp rise of the curve to the top left corner, demonstrating the model's strong 

ability to distinguish between successful and unsuccessful processes. 

The black dashed line represents a random classifier with an AUC of 0.5, serving as a baseline for comparison. The 

position of the XGBoost curve well above this line confirms the model's superior performance in classification. 

Thus, the ROC curve confirms that the XGBoost model excels in distinguishing between successful and unsuccessful 

drying processes, achieving perfect classification for both classes in this case. 

 

 
Figure 10.  

Confusion Matrix for XGBoost Model: Performance in Classifying 
Successful and Unsuccessful Drying Processes. 

 

In Figure 10, We can see the confusion matrix for the XGBoost model. The confusion matrix shows the number of 

correct and incorrect predictions made by the model for the two classes: successful (1) and unsuccessful (0) drying processes. 

The top-left corner (True Negative) shows the number of correctly classified unsuccessful drying processes — 534. The 

top-right corner (False Positive) represents the number of instances where the model incorrectly classified an unsuccessful 

process as successful — 2. The bottom-left corner (False Negative) shows the number of instances where the model 

incorrectly classified a successful process as unsuccessful — 2. The bottom-right corner (True Positive) shows the number 

of correctly classified successful drying processes — 53. 
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The confusion matrix demonstrates that the XGBoost model makes very few errors: 2 false positives and 2 false 

negatives, which confirms its high accuracy and its ability to effectively classify both successful and unsuccessful drying 

processes. 

 

 
Figure 11. 

XGBoost Feature Importance: Impact of Parameters on Drying Process Success Prediction. 

 

In Figure 11, We see the feature importance for the XGBoost model. The chart displays the relative importance of each 

feature used for predicting the success of the drying process. 

The most important feature of the model is temp_5, followed by set and temp_1, indicating their significant impact on 

the predicted outcomes. Other important features include temp_6, temp_4, and temp_2, which play a crucial role in the model 

when determining drying success. 

Less important features include partition_temperature, MCGS_TIME, temp_3, and thickness, which have lower relative 

importance values. These results confirm that the temperature in different parts of the chamber, as well as the setup mode 

and some time parameters, has the most significant influence on the model's predictions. 

The chart shows that XGBoost effectively utilizes key features related to temperature conditions for accurately 

classifying successful and unsuccessful drying processes. 

 

4.2. Interpretation of Results 

This study used machine learning (ML) models to optimize the vacuum sublimation drying process of camel milk, a 

product valued for its bioactive proteins and nutritional properties. The results obtained from the model evaluations provided 

meaningful insights into the dynamics of the drying process and the role of various parameters in determining the quality of 

the final product. 

The study's primary focus was to identify the most crucial factors affecting the success of the drying process, particularly 

the chamber temperature, vacuum pressure, and milk thickness. Among the four ML algorithms tested, the XGBoost model 

performed the best, achieving an accuracy of 99.3% in predicting the successful outcomes of the drying process. The 

algorithm demonstrated high precision (96.4%), recall (96.4%), and F1-score (96.4%), indicating its effectiveness in 

classifying successful versus unsuccessful drying processes with minimal error. 

A critical observation from the results was the importance of maintaining a uniform temperature distribution inside the 

drying chamber, especially the temperature readings at specific chamber locations (temp_5 and temp_1). The significant 

correlation between temperature distribution and drying success reaffirms the sensitivity of camel milk to temperature 

variations, which can influence the preservation of heat-sensitive bioactive compounds, such as proteins and vitamins. 

The dataset analysis also revealed the complexity of the drying process, where slight deviations from the optimal 

conditions, such as temperature fluctuations exceeding ±5°C from the set points, led to failures in the drying process. This 

highlights the need for precise control and real-time adjustments, a capability enabled by machine learning models. ML 

algorithms, by dynamically adjusting drying parameters based on sensor data, minimize the risk of quality deterioration and 

allow for efficient moisture removal, reducing energy consumption and processing time. 

Furthermore, the integration of ML also shows promising potential in enhancing the sustainability and economic 

feasibility of camel milk production. The intelligent systems not only predict optimal drying parameters but also help identify 

potential risks, such as protein denaturation or oxidation, which could compromise the nutritional integrity of the product. 

By optimizing the drying conditions, these systems contribute to the production of high-quality camel milk powder, meeting 

market demand for a nutritious and long-storable product. 

In conclusion, the study's findings emphasize the transformative potential of machine learning in optimizing complex 

drying processes. The XGBoost model proved to be the most effective tool for predicting drying outcomes, providing 

valuable insights into the parameters that influence the success of vacuum sublimation drying. This approach can significantly 

reduce experimental effort, optimize energy consumption, and improve product quality, positioning ML-driven drying 

systems as a key technology for the food industry, especially in regions like Kazakhstan, where camel milk is a valuable 

agricultural product. 
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5. Conclusion 
This research demonstrates the effectiveness of integrating advanced ML algorithms into vacuum sublimation 

drying processes for camel milk, significantly enhancing both product quality and process efficiency. Among the tested 

algorithms, Extreme Gradient Boosting (XGBoost) delivered the highest accuracy (99.3%), effectively capturing 

complex interactions between critical drying parameters. These findings underscore the importance of precise 

temperature and vacuum control in preserving valuable bioactive components and ensuring the production of a porous, 

easily soluble, and nutritious powder. The study highlights not only the potential to optimize drying parameters 

proactively but also the broader economic implications, particularly for Kazakhstan's arid regions, where efficient storage 

and transportation of camel milk are critical challenges. By reducing drying times and energy consumption through 

precise, ML-driven real-time adjustments, the proposed approach enhances both the sustainability and economic viability 

of camel milk processing. Future research should expand the experimental dataset to further validate and refine the ML 

models and incorporate standardized milk pre-processing techniques to better manage variations in milk composition. 

Additionally, integrating advanced sensor technologies, including moisture measurement systems, would provide greater 

accuracy in monitoring and controlling the drying process. Such developments will further consolidate the role of 

intelligent drying systems in transforming food processing practices, aligning economic goals with environmental 

sustainability and resource optimization. 

 

Abbreviations: 

DOAJ Directory of open-access journals 

TLA Three letter acronym 

LD Linear dichroism 

XGBoost Extreme Gradient Boosting 

TP True Positive  

TN True Negative 

FP False Positive 

FN False Negative 

HMI  Human Machine Interface 

PLC Programmable logic controller 

FAT32 File Allocation Table 

CSV Comma-Separated Values 

NTFS New technology file system 

ZJ-52T Vacuum freeze dryer 

PT-100 Temperature sensor 

ROC Receiver operating characteristic 
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Appendix A. 

 
Appendix A.1 

  Mean Std. Min. 25% 50% 75% Max. 

MCGS_TIMEMS 278.94 29.03 219.0 271.00 284.00 305.00 314.0 

Box_temp -0.67 8.28 -41.6 -5.00 -0.10 5.10 29.0 

partition_temperature -3.91 35.87 -50.7 -39.00 -1.55 30.10 50.8 

utection 925.70 0.00 925.7 925.70 925.70 925.70 925.7 

Cold_trap -57.19 29.79 -92.1 -72.93 -66.70 -56.20 38.6 

set -6.08 37.82 -50.0 -50.00 -15.00 30.00 50.0 

Box_vaccum 17372.72 37959.72 0.1 0.35 2.30 15.00 110000.0 

temp_1 -16.14 26.66 -49.5 -35.70 -22.60 -5.98 50.4 

temp_2 -12.80 29.61 -51.4 -36.40 -22.40 6.50 51.2 

temp_3 -16.42 26.27 -51.6 -35.90 -21.80 -7.68 51.0 

temp_4 -12.22 30.87 -51.4 -36.70 -22.80 10.75 51.3 

temp_5 -19.23 25.10 -50.8 -37.02 -22.20 -16.18 52.0 

temp_6 -12.67 27.45 -46.8 -33.50 -18.95 0.80 51.6 

success 0.09 0.29 0.0 0.00 0.00 0.00 1.0 

thickness 27.27 22.09 1.5 8.30 19.55 41.72 89.5 

 

Table A1. This is a table caption. 
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