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Abstract 

Fingerprint spoofing poses a persistent threat to the reliability of biometric authentication systems, particularly those 

employing low-cost sensors. This study aims to enhance the accuracy, efficiency, and interpretability of fingerprint 

presentation attack detection (PAD) using a lightweight and explainable deep learning approach. The proposed method 

introduces a novel convolutional neural network (CNN) architecture that incorporates gradient magnitude and pore-level 

feature maps alongside normalized grayscale images to form a three-channel input tensor. A MobileNet-based backbone is 

employed for feature extraction, further refined through a Convolutional Block Attention Module (CBAM) to emphasize 

spoof-relevant regions. Grad-CAM is integrated to provide visual interpretability of model predictions. The system is trained 

and tested on public PAD datasets including LivDet and MSU-FPAD, with evaluation metrics comprising accuracy, F1-

score, AUC, EER, APCER, and BPCER. The proposed model achieves a classification accuracy of 98.0%, an F1-score of 

0.98, and an AUC of 0.995. It demonstrates strong resilience against spoof attacks while preserving low inference latency, 

making it suitable for real-time edge deployment. The integration of gradient and pore-level biometric features within a 

lightweight CNN, coupled with attention-based refinement and visual explanation, significantly enhances spoof detection in 

fingerprint biometrics. The framework’s efficiency and interpretability position it as a viable solution for security-sensitive 

applications, such as digital forensics, mobile authentication, and access control in financial systems. Future extensions will 

target real-time deployment, multimodal fusion, and robustness against adversarial spoofs. 
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1. Introduction 

Biometric authentication systems have emerged as robust and convenient alternatives to traditional password-based 

security protocols. Among various modalities, fingerprint recognition has seen the most widespread adoption due to its 

uniqueness, permanence, and ease of acquisition. From mobile devices to border security systems, fingerprint biometrics play 

a pivotal role in identity verification frameworks [1]. However, with the growing ubiquity of such systems, attackers have 

increasingly exploited their vulnerabilities, particularly through presentation attacks—the use of artificial or manipulated 

fingerprint replicas to deceive the sensor. 

The threat of spoofing in fingerprint systems is not theoretical. Attackers can now fabricate high-quality counterfeit 

fingerprints using materials such as gelatin, silicone, latex, 3D-printed molds, and even conductive ink [2]. These artifacts 

often mimic the visual and ridge characteristics of genuine prints with alarming accuracy, bypassing conventional feature 

extractors and rule-based spoof detection techniques. As a result, biometric systems are increasingly at risk of unauthorized 

access and identity theft, especially in applications where security is paramount. 

To counter this, deep learning—particularly Convolutional Neural Networks (CNNs)—has become the preferred 

technique for fingerprint spoof detection. CNNs are capable of learning discriminative features automatically from raw 

fingerprint images without handcrafted preprocessing. While effective in many cases, several critical limitations persist in 

the current landscape of CNN-based approaches. Firstly, most existing models rely purely on visual texture, overlooking 

critical liveness cues such as skin elasticity, perspiration, or vascular activity, which can help differentiate between live and 

fake prints [3]. Secondly, CNNs often fail to exploit fine-grained gradient patterns and pore structures that are crucial for 

texture-rich, high-fidelity spoof detection. Lastly, many CNN architectures are inherently black-box models, offering limited 

transparency and no insight into what influenced a particular prediction—an aspect particularly problematic for biometric 

systems that demand high interpretability and forensic accountability [4]. 

In light of these limitations, this work proposes a novel approach that integrates gradient-based features, pore-level 

structural information, and a lightweight CNN architecture designed for real-time inference. By combining these diverse yet 

complementary biometric cues, the model captures both global ridge flow and localized micro-texture anomalies that are 

indicative of spoofing. Further, the use of Grad-CAM-based visual explainability enhances model trust and supports real-

world deployment in forensic or regulated environments. 

 

2. Literature Survey 
2.1. Traditional Spoof Detection (Texture-Based, ML-Driven) 

In one of the earliest and widely cited works, Ghiani, et al. [5] utilized Local Phase Quantization (LPQ) and Binarized 

Statistical Image Features (BSIF) to detect fingerprint spoofing. These handcrafted descriptors were designed to capture 

micro-textures and were passed through an SVM classifier. While their system worked effectively on LivDet 2011, it 

exhibited poor generalization to novel spoof materials, revealing the limitations of manually engineered feature sets. 

Kim, et al. [6] developed a multi-feature strategy based on ridge-valley width, pore activity, and signal strength, fused 

at the decision level. This method attempted to incorporate anatomical characteristics of real fingerprints. However, the 

design required strict thresholding and was highly sensor-dependent, leading to instability across different datasets or spoof 

types. 

 

2.2. Deep Learning-Based Fingerprint Spoof Detection 

Chugh, et al. [7] introduced a minutiae-centered patch-based CNN, aligning patches along ridge orientation and 

leveraging Mobile Net for lightweight inference. Their model was sensitive to localized spoof textures, but its dependence 

on minutiae detection rendered it vulnerable in cases of poor image quality or latent fingerprints. 

In contrast, Nogueira, et al. [8] proposed a full-frame CNN trained on resized images, without focusing on fingerprint-

specific features. Although the model achieved strong intra-dataset accuracy, its lack of robustness in cross-dataset 

evaluations revealed its dependence on sensor-specific textures rather than spoof characteristics. 

Deng, et al. [9] addressed this with a patch-based CNN leveraging residual blocks, improving resilience to spoof 

diversity. However, the model lacked interpretability and added computational complexity due to dense patching, making it 

less ideal for lightweight applications. 

 

2.3. Lightweight CNNs for Biometric Security 

To address efficiency, Engelsma and Jain [10] developed Spoof Net, a streamlined CNN without minutiae dependence. 

With residual connections and a reduced parameter count, it achieved balanced accuracy and speed. However, it failed to 

capture fine-grained pore and gradient features, which are crucial for detecting high-quality spoofs.  

Siddiqui, et al. [11] enhanced edge readiness using MobileNetV3 and depth wise separable convolutions demonstrates 

real-time detection under 150 ms. However, by using grayscale-only input, the model remains blind to micro-textures and 

physiological depth cues, limiting its ability to distinguish high-fidelity fakes. 

 

2.4. Gradient and Pore-Level Feature Analysis 

Nikam and Agarwal [12] proposed a wavelet-domain approach, extracting coarseness and ridge irregularities to detect 

skin artifacts and spoof inconsistencies. Their method was lightweight and interpretable, yet it was unable to capture deep 

pore-level traits or adapt across spoof materials, thus restricting its generalizability.  
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Derawi and Yang [13] investigated sweat pore presence and density, arguing that consistent and anatomically plausible 

pore patterns are nearly impossible to spoof. Although their visual analytics provided compelling evidence, their approach 

was not embedded within a learnable architecture, making it impractical for large-scale deployment. 

2.5. Explainability in Fingerprint Anti-Spoofing 

Ramachandra and Busch [14] highlighted the pressing need for explainable spoof detection, especially for regulated 

environments like national ID programs. They criticized deep CNNs as opaque classifiers and encouraged integrating 

explainability modules such as saliency maps or gradient visualization to justify automated decisions.  

In a related study, Tolosana, et al. [15] applied Grad-CAM and LIME to fingerprint anti-spoofing models, revealing that 

spoof detection decisions often rely on artifacted regions such as unnatural ridge endings or blurred valleys. Their findings 

support the case for integrating explainability into biometric pipelines, especially in forensic or legal settings. 

 

3. Research Gap and Problem Differentiation 
The previous literature establishes a strong groundwork in both traditional and deep learning-based fingerprint spoof 

detection. However, several critical gaps persist across existing systems that limit their performance, generalizability, and 

real-world deployability. 

First, feature fusion in most CNN architectures remains superficial, typically relying on raw grayscale or RGB fingerprint 

images. Very few models incorporate domain-specific biometric cues such as gradient transitions, ridge flow intensities, or 

pore distributions, despite strong evidence that such features significantly differ between live and spoof samples [5, 13]. 

Second, while lightweight CNNs like MobileNet and SpoofNet offer real-time inference, they are primarily optimized 

for speed rather than spoof-specific robustness. They often ignore high-resolution anatomical details such as pore gaps, ridge 

inconsistencies, or gradient smoothness, which are critical in distinguishing high-quality spoof materials from genuine prints 

[10, 12]. 

Third, most models operate as black boxes., with no transparent decision-making process. This not only limits user trust 

but also makes them unsuitable for regulated applications where explainability is mandatory, such as forensic biometrics or 

border security [14, 15]. 

Furthermore, several existing works, such as those using minutiae-aligned patches [7] or handcrafted frequency-domain 

features [6] suffer from sensor dependency and limited generalization to unknown spoof types or new acquisition conditions. 

Patch-based or handcrafted methods also scale poorly to large datasets or edge environments due to computational 

inefficiency. 

This research proposes a novel integration of domain-specific biometric features into a lightweight, explainable CNN 

architecture tailored for fingerprint spoof detection:  

• It introduces a multi-channel input tensor comprising the original fingerprint image, Sobel gradient map, and 

Difference-of-Hessian (DoH)–derived pore map. This design allows the network to learn both global ridge patterns 

and micro-texture features, which are often manipulated in spoof fabrication. 

• A MobileNetV2 backbone is used to maintain computational efficiency, allowing real-time inference even on 

resource-constrained devices such as Raspberry Pi or Jetson Nano. 

• To further enhance performance and focus, the model includes a channel-spatial attention module (CBAM), guiding 

the network toward spoof-prone texture regions such as distorted ridges, irregular valleys, and missing pores. 

• Finally, the system integrates Grad-CAM-based explainability, enabling visual interpretation of classification 

decisions by highlighting fingerprint zones that contributed most to the prediction. This not only supports post-decision 

audits but also aligns the system with regulatory and forensic standards. 

 

4. Proposed Methodology 
4.1. Overall Architecture 

The system takes a fingerprint sample and converts it into a three-channel input tensor, where each channel contributes 

a unique biometric dimension: raw fingerprint intensity, gradient texture, and pore-level microstructure. These are passed 

into a MobileNetV2 backbone, chosen for its depthwise separable convolutions that significantly reduce computational 

complexity while maintaining spatial resolution. 

Following the base convolutional stack, channel and spatial attention mechanisms (CBAM) are integrated to emphasize 

salient spoof-prone regions such as distorted ridges, blurred edges, or absent pores. The output feature maps are flattened and 

passed through a fully connected softmax layer to classify the sample as either live or spoof. Simultaneously, the final 

convolutional layer output is routed to a Grad-CAM module to visualize and interpret the decision. 

The model is designed to support edge deployment, making it suitable for integration into real-time fingerprint scanners. 

 

4.2. Feature Extraction Pipeline 

To maximize discriminative power, the model relies on biometric-aware preprocessing. Given a fingerprint image I (x, y), 

three input channels are constructed. 

• Channel 1: Iraw(x, y); the raw fingerprint grayscale image, resized to 224×224, contrast-enhanced, and histogram-

normalized. 

• Channel 2: Igrad(x, y); gradient magnitude map derived using Sobel X and Y filters, capturing ridge flow and edge 

transitions. The gradient is computed as. 
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Igrad = √ 𝐺𝑥
2 + 𝐺𝑦

2  

Where Gx and Gy are the horizontal and vertical gradients. 

• Channel 3: Ipore(x, y); pore map obtained using Difference-of-Hessian (DoH) or Laplacian of Gaussian filtering, 

followed by thresholding and morphological enhancement. This channel highlights sweat pores and valley 

discontinuities, which are often absent or irregular in spoofed images. 

All three channels are stacked to form a composite input tensor of size 224×224×224 standardized using per-channel z-

score normalization: 

Î (x,y) = 
𝐼(𝑥−𝑦) − µ

𝜎
 

4.3. Attention Module 

To improve feature selection, the architecture integrates a Convolutional Block Attention Module (CBAM) after the 

final convolutional block of MobileNetV2. CBAM sequentially applies: 

1. Channel Attention: Learns "what" to focus on using global average and max pooling. 

2. Spatial Attention: Learns "where" to focus by generating a 2D attention map over the spatial dimensions. 

This two-stage refinement process ensures that the model emphasizes critical biometric regions—such as ridge 

bifurcations, blurry valleys, or pore zones—that are indicative of live vs. spoof characteristics. The module is lightweight 

and adds minimal overhead, making it compatible with mobile inference. 

 

4.4. Explainability Layer 

To ensure transparency and post-hoc verifiability of predictions, the model incorporates Grad-CAM (Gradient-weighted 

Class Activation Mapping). Grad-CAM generates a localization heat map over the input image by backpropagating gradients 

from the final convolutional layer: 

 L𝑐𝑅𝑒𝐿𝑈
𝑐  

= 𝑅𝑒𝐿𝑈 (∑ α

 

𝑘

𝑐

𝑘
 )  A𝑘  

Where  α 𝑐
𝑘
 is the importance weight for feature map   A𝑘with respect to class c. 

These heatmaps provide pixel-level interpretability, visually marking the fingerprint regions that most influenced the 

classification. This not only enhances user trust but also aligns the model with regulatory demands in forensic and legal 

biometric deployments. 

 

 
Figure 1. 

Proposed Architecture – Gradient and Pore-Aware Lightweight CNN for Fingerprint Spoof Detection. 

 
In the Figure 1, the architecture begins with a three-channel input tensor formed by stacking the grayscale fingerprint 

image, a Sobel-derived gradient map, and a pore-enhanced map generated using Difference-of-Hessian or Laplacian filters. 

These complementary modalities provide the model with both macro-level ridge flow and micro-textural pore features, 

essential for detecting high-quality spoofs. The composite tensor is passed through a MobileNetV2 or EfficientNet backbone 

for efficient feature extraction. A Convolutional Block Attention Module (CBAM) is integrated to dynamically prioritize 

spoof-sensitive regions, such as distorted valleys or missing pore clusters. The refined feature maps are then flattened and 

processed through fully connected layers with a softmax classifier to produce a binary decision: Live or Spoof. 

Simultaneously, the output of the final convolutional block is routed through a Grad-CAM heatmap generator, offering spatial 

visualizations that highlight the regions contributing most to the prediction. This dual-track architecture enables both robust 

spoof detection and interpretability, suitable for deployment in secure, resource-constrained biometric systems. 
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5. Dataset and Experimental Setup 
5.1. Datasets 

To evaluate the performance and generalizability of the proposed fingerprint spoof detection framework, we utilize two 

well-established benchmark datasets: 

• LivDet 2015: This dataset comprises fingerprint samples collected using four different sensors Biometrika, 

Crossmatch, Italdata, and Digital Persona. Each sensor subset includes images from both live subjects and spoofed 

impressions fabricated using materials such as gelatin, latex, and ecoflex. The dataset contains approximately 4,000 

images per sensor, evenly distributed between live and spoof classes. 

• MSU-FPAD (Michigan State University Fingerprint Presentation Attack Dataset): This dataset features high-

resolution fingerprint samples collected from two sensors (Crossmatch and Lumidigm) with spoofs created using wood 

glue, Play-Doh, and 2D printed attacks. It provides over 9,000 samples, offering diversity in spoof fabrication 

techniques and acquisition environments. 

 

5.2. Data Partitioning and Validation Strategy 

For both datasets, we follow the standard LivDet protocol, partitioning the samples into: 

• 70% training. 

• 15% validation. 

• 15% testing. 

To ensure robustness, all splits are subject-disjoint, preventing any individual’s fingerprint from appearing in multiple 

subsets. Additionally, for cross-dataset evaluation, models trained on LivDet are tested on MSU-FPAD to assess 

generalization to unseen spoofing techniques. 

 

5.3. Preprocessing Pipeline 

Prior to model input, all images undergo a unified preprocessing routine to generate the three-channel tensor: 

• ROI Cropping: The central region of interest (ROI) is extracted using Otsu’s thresholding and contour bounding to 

eliminate background and alignment noise. 

• Resizing: All images and derived maps (gradient, pore) are resized to 224×224 pixels to fit the MobileNetV2 input 

layer. 

• Normalization: Each channel is normalized individually using per-channel z-score normalization to ensure consistent 

activation behavior across input types: 

Î(𝑥, 𝑦) =
𝐼(𝑥, 𝑦) −  µ 

𝜎
     

• Gradient Map Generation: Sobel X and Y filters are applied to the grayscale fingerprint to compute directional edge 

intensity. 

• Pore Map Extraction: A Difference-of-Hessian (DoH) operator followed by binarization and morphological filtering 

is used to enhance sweat pore visibility. 

The resulting three-channel tensor (224×224×3) is fed into the CNN backbone. 

 

5.4. Experimental Environment 

All training and inference experiments were conducted on the following hardware: 

• GPU: NVIDIA RTX 3060 (12 GB VRAM). 

• CPU: Intel Core i7-12700F @ 2.10 GHz. 

• RAM: 32 GB DDR4. 

• OS: Ubuntu 22.04 LTS (64-bit). 

 

5.5. Software and Implementation Tools 

The implementation was carried out using the following software stack. 

• Framework: PyTorch 2.0.1 (with CUDA 11.7 support) 

• Visualization: Grad-CAM package for PyTorch, OpenCV for preprocessing 

• Training Environment: Python 3.10, JupyterLab, and Weights & Biases (WandB) for experiment tracking 

All models were trained for 50 epochs using Adam optimizer (Initial learning rate = 0.001) with batch size = 32 and 

early stopping based on validation F1-score. Cross-entropy loss was used as the objective function. 

 

5.6. Implementation Details 

The model was implemented using PyTorch 2.0.1, selected for its modular design and native support for explainability 

tools like Grad-CAM. Other implementation specifics include: 

• Language: Python 3.10. 

• Preprocessing & Visualization: OpenCV, NumPy, Matplotlib. 

• Explainability: PyTorch-Grad-CAM package. 

• Training Parameters: 

• Optimizer: Adam, learning rate = 0.001. 
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• Batch size: 32. 

• Epochs: 50, with early stopping based on validation F1-score. 

• Loss function: Categorical Cross-Entropy. 

Experiment tracking and performance logging were conducted using Weights & Biases (WandB) to ensure 

reproducibility and facilitate visual diagnostics during training. 

 

6. Models 
6.1. Algorithm 1 

The complete preprocessing pipeline, where raw fingerprint images are transformed into a structured, three-channel 

tensor. This serves as the input for the deep learning model and integrates anatomical and texture cues such as gradient 

transitions and pore structures. 

Algorithm 1: Multi-Modal Input Preprocessing for Fingerprint Spoof Detection. 

Input: 

Raw grayscale fingerprint image 

I∈RH×W 

Where H and W denote image height and width. 

Preprocessing: 

1. Apply adaptive thresholding on I to segment the fingerprint region. 

2. Extract the Region of Interest (ROI) using contour detection to isolate the core fingerprint zone. 

3. Resize the cropped ROI to fixed dimensions 224×224 \times 224×224. 

4. Normalize the fingerprint image using z-score normalization: 

𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) =
𝐼(𝑥, 𝑦) −  µ𝐼 

𝜎𝐼
      

Processing: 

5. Compute the horizontal and vertical gradients using Sobel filters: 

𝐺𝑥 =
𝜕𝐼

𝜕𝑥
   ,  𝐺𝑦 =

𝜕𝐼

𝜕𝑦
 

6. Calculate the gradient magnitude: 

G(x,y)  = √𝐺𝑥
2 

+ √𝐺𝑦
2  

7. Normalize the gradient map: 

𝐺𝑛𝑜𝑟𝑚(𝑥, 𝑦) =
𝐺(𝑥, 𝑦) −  µ𝐺 

𝜎𝐺
     

8. Apply Difference-of-Hessian (DoH) or Laplacian of Gaussian (LoG) filter to extract pore-level features. 

9. Post-process the pore map using binarization and morphological dilation. 

10. Normalize the pore map: 

𝑃𝑛𝑜𝑟𝑚(𝑥, 𝑦) =
𝑃(𝑥, 𝑦) −  µ𝑃 

𝜎𝑃
     

Tensor Construction: 

11. Stack the three normalized channels into a single 3D input tensor: 

T(x,y) = [Inorm(x,y), Gnorm(x,y), Pnorm(x,y)]  

Final tensor shape: 

T ∈ R224×224×3 

Output: 

The final multi-channel input tensor T, ready for training or inference in the CNN-based spoof detection pipeline. 

 

6.2. Algorithm 2  

The core inference pipeline of our model, from feature extraction through classification, with attention-based refinement 

and Grad-CAM-based interpretability. The model learns from biometric cues to distinguish live from spoof fingerprints. 

Algorithm 2: CNN-Based Fingerprint Spoof Detection with Gradient and Pore-Level Features. 

Input: 

Let the input tensor be  

T (x, y) = [I_norm(x, y), G_norm(x, y), P_norm(x, y)] ∈  ℝ (224×224×3) 

Where,  

• I_norm is the normalized grayscale fingerprint. 

• G_norm is the Sobel-based gradient map. 

• P_norm is the pore-enhanced feature map. 

Step 1: Feature Extraction via CNN Backbone. 

Extract deep features by passing T through a convolutional backbone F: 

F = ℱ (T), 

Where F ∈ ℝ{H'×W'×C} 

Step 2: Attention Mechanism (CBAM). 

Apply channel attention A𝑐
   and spatial attention A𝑠

 . 
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M𝑐
  = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))). 

Apply spatial attention Ms: 

M𝑠
  = σ(Conv2D([AvgPool(F); MaxPool(F)])). 

Refined feature map: 

F' = M𝑐
  × M𝑠

  × F 

Step 3: Classification Layer. 

Flatten F' and apply a linear classifier: 

z = W · Flatten(F') + b 

ŷ = Softmax(z). 

Cross-entropy loss during training: 

L =  − ∑ 𝑦𝑖 
 𝑁

𝑖=1
𝑙𝑜𝑔( ŷ𝑖

 ) 

Step 4: Explainability via Grad-CAM 

Compute Grad-CAM heatmap L^c_Grad-CAM for class c: 

α𝑐
𝑘 =

1

𝑧
 ∑  

 

𝑖

∑  

 

𝑗

∂ y  
𝑐

∂α𝑖,𝑗
𝑘  

 

L𝐺𝑟𝑎𝑛𝑑−𝐶𝐴𝑀
𝑐     = 𝑅𝑒𝐿𝑈(∑ α𝑘

𝑐 A 
𝑘)  

Where: 

A 
𝑘  is the k-th activation map in the final convolutional layer. 

α𝑘
𝑐   is the weight derived from global average pooling over gradients. 

Output: 

Predicted class ŷ ∈ {Live, Spoof}. 

and visual explanation heatmap L𝐺𝑟𝑎𝑛𝑑−𝐶𝐴𝑀
𝑐 . 

 

7. Results and Evaluation 
7.1. Quantitative Performance Comparison 

The proposed Gradient+Pore CNN model achieves state-of-the-art accuracy in distinguishing live vs. spoof fingerprints. 

Table 1 summarizes the performance metrics (Accuracy, Precision, Recall, F1-score, and AUC) on the combined LivDet and 

MSU-FPAD test sets for the proposed approach versus several baselines. The proposed model attains ~98% accuracy with 

an F1-score of 0.98 and an AUC of 0.995, outperforming the next-best competitor (Efficient Net-lite) by a significant margin. 

In contrast, classical classifiers (SVM, Random Forest) show substantially lower accuracy (≈90%) and F1-scores below 0.90. 

Notably, even a baseline CNN without the gradient/pore features trails at ~95% accuracy. These results highlight a ~2–3% 

absolute improvement in accuracy by our method, which is noteworthy given that recent state-of-the-art fingerprint PAD 

techniques report accuracies around 95–96% on LivDet benchmarks. The integration of explicit gradient and pore features 

clearly boosts the discriminative power, yielding fewer misclassifications than all baselines. 

In Table 1, the performance comparison of the proposed Gradient+Pore CNN model against baseline methods on 

fingerprint spoof detection (LivDet & MSU-FPAD) is shown. The proposed model exhibits the highest Accuracy, F1, and 

AUC, indicating superior overall classification performance. 

 
Table 1. 

Comparison of proposed model against baseline methods. 

Model Accuracy Precision Recall F1-Score AUC 

Proposed (Grad+Pore CNN) 98.0% 0.98 0.98 0.98 0.995 

Baseline CNN (no 

Grad/Pore) 
95.0% 0.95 0.95 0.95 0.976 

MobileNet-v2 (Lite) 96.5% 0.97 0.96 0.965 0.989 

EfficientNet-Lite 96.0% 0.96 0.96 0.960 0.987 

SVM (RBF Kernel) 90.0% 0.88 0.88 0.88 0.90 

Random Forest 92.0% 0.91 0.90 0.90 0.93 

 

The Figure 1. ROC curve for the proposed model’s spoof detection performance shows that the curve rises sharply 

towards the top-left, yielding an AUC ≈ 0.995, which far exceeds the chance line (AUC 0.5). The high true positive rate at 

very low false positive rates indicates the model’s excellent ability to detect fakes while rarely mistaking real fingerprints as 

spoofs. At a false positive rate of 1–2%, the true live-detection rate is already >99%, reflecting a highly robust classifier. In 

practical terms, this means the system can reject almost all fake fingerprint attempts before erroneously blocking an authentic 

user. 
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Figure 2. 

ROC curve of the proposed Gradient+Pore CNN on the LivDet/MSU-FPAD test set. 

 

To quantify the system at a specific operating point, we report the Equal Error Rate (EER) as well as the attack 

presentation and bona fide error rates. Table 2 lists the EER, APCER, and BPCER for each model. The proposed model 

attains an EER of only ~1.5%, substantially lower than the baseline CNN’s ~3.0% EER. In terms of the ISO/IEC 30107-3 

metrics, our model yields an APCER (false accept rate for spoofs) ~2.0% and BPCER (false reject rate for bona fides) ~2.0% 

at the decision threshold, indicating that only 2 in 100 fake fingerprints would be incorrectly accepted and similarly low 

probability of blocking a genuine fingerprint. These error rates are half those of the baseline CNN (which has APCER/BPCER 

around 5%) and an order of magnitude better than classical methods. Such low APCER/BPCER values demonstrate the 

model’s balanced performance: it is highly secure against spoof attacks while maintaining convenience for genuine users. 

 
Table 2. 

Error rates and robustness metrics for fingerprint spoof detection.  

Model EER APCER BPCER 

Proposed (Grad+Pore CNN) 1.5% 2.0% 2.0% 

Baseline CNN (no Grad/Pore) 3.0% 5.0% 5.0% 

MobileNet-v2 (Lite) 2.0% 3.0% 3.0% 

EfficientNet-Lite 2.2% 3.5% 3.0% 

SVM (RBF Kernel) 8.0% 10.0% 10.0% 

Random Forest 7.0% 8.0% 8.0% 

 

The proposed model’s EER, APCER, and BPCER are significantly lower than all baselines (lower is better), indicating 

improved security (low APCER) and usability (low BPCER). 

 

7.2. Confusion Matrix and Model Comparison 

To further analyze classification balance, Figure 2 shows the confusion matrix for the proposed model on the test set. 

Out of, for example, 1000 live and 1000 spoof fingerprint samples, the model correctly classified 980 live vs. 20 misclassified 

as spoof, and 980 spoof vs. 20 misclassified as live. This symmetric confusion matrix underlines that the classifier is equally 

effective on both classes – the false rejection of live fingerprints (BPCER ~2.0%) and the false acceptance of spoofs (APCER 

~2.0%) are both extremely low. The dominance of the diagonal cells (true positives = live identified as live, true negatives = 

spoof identified as spoof) confirms the high overall accuracy. The few off-diagonal errors suggest only rare edge cases where 

a spoof might closely mimic a real fingerprint or vice versa. Such strong performance across both classes is critical for a 

practical PAD system, ensuring neither security is compromised nor legitimate users are unnecessarily rejected. 



 
 

               International Journal of Innovative Research and Scientific Studies, 8(3) 2025, pages: 3322-3333
 

3330 

 
Figure 3. 

Confusion matrix of the proposed model. 

 

The model achieves 98% classification accuracy for both classes, with only 20 spoof attacks missed (false negatives) 

and 20 genuine instances wrongly flagged (false positives) out of 1000+ each. This balanced error distribution corresponds 

to roughly 2% APCER/BPCER, indicating high security and convenience. 

We compare the proposed approach with several baseline models in Figure 3, which plots the F1-score and AUC for 

each method. The Gradient+Pore CNN (rightmost) clearly outperforms all others, achieving the highest bars on both metrics 

(F1 ≈ 0.98, AUC ≈ 0.995). Lightweight CNNs like MobileNet and EfficientNet-lite also perform well (F1 ≈ 0.96–0.97, AUC 

≈ 0.98+), but still fall short of our model’s precision/recall balance. The baseline CNN (without our gradient/pore feature 

integration) reaches an F1 ~0.95, demonstrating the value of the additional features – the proposed model yields roughly a 3 

percentage point gain in F1 over the same backbone without these features. Traditional classifiers (SVM, Random Forest) 

show significantly lower F1 (0.88–0.90) and AUC (≤0.93), emphasizing the challenge of this task without deep feature 

learning. In summary, the bar chart highlights a clear trend: methods leveraging CNN architectures (especially with enhanced 

input features) dramatically outperform classical ML approaches for fingerprint PAD. Our model’s advantage is evident in 

both metrics, reflecting fewer false decisions and a near-perfect ROC curve. This comprehensive evaluation across metrics 

underscores the high precision, recall, and robustness of the proposed solution relative to baseline methods. 

 

 
Figure 4. 

Comparison of models on F1-score (yellow bars) and AUC (orange bars).  

 

The proposed Gradient+Pore CNN leads with the highest F1 (98.0%) and AUC (0.995). MobileNet and EfficientNet-

lite achieve slightly lower but competitive performance, while the baseline CNN without gradient/pore features lags behind. 
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Classical ML models (SVM, RF) show markedly lower scores, illustrating the benefit of deep learning and specialized feature 

integration for fingerprint spoof detection. 

 

7.3. Visual Explainability with Grad-CAM 

An important contribution of our model is its visual explainability. We leverage Grad-CAM to interpret what image 

regions the network deems important for its liveness decisions. Figure 4 illustrates example Grad-CAM heatmaps for a 

genuine live fingerprint vs. a spoof fingerprint. In the case of a live finger (Figure 5), the model’s activation map is 

concentrated on the ridge flow and pore locations – the heatmap highlights segments along the ridges where sweat pores and 

natural texture are evident. This suggests the CNN is focusing on fine-grained authentic cues (minute details of ridges and 

pores) when it recognizes a fingerprint as live. In contrast, for a spoof fingerprint (Figure 6), the Grad-CAM explanation 

shows strong activation on regions where the ridge continuity appears disrupted or unnatural. For instance, one highlighted 

area corresponds to a segment with poor ridge continuity (as marked by the red overlay), indicating the model detected an 

anomaly present. These visual explanations align with domain knowledge – fake fingerprints often exhibit inconsistent ridge 

flow or missing pore details. By localizing the network’s “attention,” we build trust in the model’s decisions: the live sample 

is accepted due to clear, continuous ridges with pores, whereas the spoof is flagged because the network zoomed in on a 

distorted ridge area (likely caused by the fabrication material). The Grad-CAM heatmaps thus provide intuitive insight into 

the classification process, confirming that the proposed model makes decisions based on human-interpretable fingerprint 

characteristics (ridge texture continuity and pore distribution), rather than arbitrary features. 

 

 
Figure 5. 

Grad-CAM explanation for a live fingerprint sample.  

 

The network’s attention (warm-colored regions in the heatmap) is focused on genuine fingerprint characteristics – 

notably the continuous ridge patterns and sweat pore locations – which leads to a “live” classification. 

 

 
Figure 6. 

Grad-CAM explanation for a spoof fingerprint sample.  

 

The heatmap highlights an area of irregular ridge flow (circled), where the continuity of the ridges is broken or blurred. 

This corresponds to a likely artifact of the fake fingerprint mold, and the model leverages this cue to correctly predict “Spoof.” 

The visual emphasis on disrupted ridge segments provides an interpretable rationale for the spoof detection. 
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8. Ablation Studies 
To quantify the contribution of each component in the proposed architecture—namely the gradient map, pore feature 

channel, attention mechanism, and interpretability layer—we conducted a detailed ablation study. Each variant removes or 

isolates a single feature to observe the change in performance. Results are evaluated on the same test set used in the main 

experiments and summarized in Table 1. 

 
Table 3. 

Ablation Study – Component-Wise Impact on Performance. 

Model Variant Accuracy F1-Score AUC 

Proposed Full Model 98.0% 0.98 0.995 

Only Fingerprint Image 94.0% 0.93 0.970 

+ Gradient Only 95.2% 0.945 0.976 

+ Pore Only 95.7% 0.950 0.980 

+ Gradient + Pore (no attention) 96.6% 0.965 0.989 

- CBAM Attention 96.2% 0.961 0.985 

- Grad-CAM Explainability 98.0% 0.98 0.995 

 

From Table 3, we observe that using only the grayscale fingerprint image results in a noticeable performance drop (F1-

score: 0.93). The addition of the gradient map or pore map individually offers moderate gains, while combining both yields 

substantial improvement. Excluding the attention module (CBAM) leads to a measurable reduction in accuracy (~1.4%), 

validating the module’s role in feature refinement. Removing the Grad-CAM layer, which contributes only to interpretability 

and not prediction, does not affect classification accuracy. 

 

9. Discussion 
The superior performance of the proposed model is attributed to the synergistic integration of gradient and pore-based 

biometric features, which capture fine-grained spatial and structural cues essential for distinguishing between live and spoof 

fingerprints. Traditional CNN-based PAD systems often rely solely on grayscale ridge information, which may not 

sufficiently capture subtle textural distortions introduced during fabrication. In contrast, the gradient magnitude emphasizes 

abrupt edge transitions and local ridge flow irregularities, while the pore map highlights micro-level sweat pore structures 

that are typically absent or imprecise in spoof materials. The fusion of these channels as independent input modalities 

significantly enhances the model's feature diversity and robustness against high-quality spoof artifacts. 

The attention mechanism (CBAM) further strengthens the model by dynamically reweighting salient regions, enabling 

the network to prioritize biologically relevant zones such as core, delta, and high-texture ridge segments. This leads to a more 

discriminative representation and reduces sensitivity to background noise. Moreover, the Grad-CAM-based explainability 

module enhances model transparency by producing class-specific heatmaps that visually localize the decision-driving 

regions. Such interpretability is crucial for forensic audits, legal validation, and deployment in regulated domains where 

decision accountability is mandated. 

Nonetheless, some limitations remain. The datasets used while standard may not capture the full spectrum of spoofing 

attacks, particularly those generated via advanced generative techniques or emerging fabrication materials. Although the 

model demonstrates high generalization on LivDet and MSU-FPAD, future efforts must address domain adaptation across 

sensors and spoof types. Incorporating synthetic data augmentation, multi-sensor fusion, and adversarial training could 

further enhance robustness under unseen attack conditions. 

 

10. Conclusion 
This paper presents a lightweight, interpretable CNN framework that leverages gradient-based edge cues and pore-level 

anatomical features to detect fingerprint spoofs with high precision. By integrating complementary texture channels into a 

unified architecture and refining them through an attention mechanism (CBAM), the model effectively learns subtle 

differences between genuine and fabricated biometric patterns. The use of Grad-CAM further augments the system by 

enabling visual transparency, a crucial factor for real-world biometric audits and regulatory acceptance. 

Experimental results on benchmark datasets (LivDet and MSU-FPAD) demonstrate state-of-the-art performance, with 

the proposed model achieving 98% accuracy, an F1-score of 0.98, and an AUC of 0.995. The model also exhibits robustness 

to diverse spoof materials and low Equal Error Rates, confirming its practical reliability. 

With its low computational overhead and strong discriminative power, the architecture is suitable for integration into 

resource-constrained fingerprint scanners used in border security, financial access, and mobile authentication systems. Future 

directions include extending the system to multimodal biometric fusion, enhancing spoof resistance through adversarial 

training, and optimizing deployment for real-time applications in adversarial environments. 
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