

ISSN: 2617-6548

URL: www.ijirss.com



## Toward smart cities: A systematic literature review of digital collaboration among institutions

Edi Suyitno<sup>1\*</sup>, Ahmad Hidayat Sutawijaya<sup>2</sup>

<sup>1,2</sup>Universitas Esa Unggul, Jakarta, Indonesia.

Corresponding author: Edi Suyitno (Email: edisuyitno@student.esaunggul.ac.id)

### **Abstract**

This study systematically reviews the literature on institutional digital collaboration in smart city initiatives to examine (1) the most prevalent collaboration models, (2) the enabling and limiting factors shaping these collaborations, and (3) their contributions to innovation and governance improvement. Following the PRISMA 2020 guidelines, we systematically searched the Scopus and PubMed databases for peer-reviewed studies published between 2015 and 2025 on inter-institutional digital collaboration in smart-city contexts; 30 studies met the inclusion criteria and were critically appraised using the CASP checklist. Public—Private Partnerships (PPP) were most frequent (10/30), followed by Quadruple Helix (9/30), Open Data Ecosystems (6/30), Smart Governance (4/30), Urban Living Labs (2/30), and Triple Helix (1/30). Because several studies employed more than one model, categories were coded non-exclusively. Key enablers included advanced digital technologies (IoT, AI, big data), strong political and legal support, and active multi-stakeholder engagement. Conversely, fragmented governance structures, resource constraints, and technical challenges, especially interoperability and privacy concerns, were the most significant barriers. Outcomes primarily comprised conceptual and implementation frameworks (60%), followed by prototypes (20%) and policy insights (20%). The findings highlight a shift from traditional PPPs to more inclusive and data-driven collaboration frameworks, reinforcing the dual role of these partnerships in advancing urban innovation and strengthening governance capacity. Future research should prioritize empirical and longitudinal evaluations to assess the scalability and long-term impact of collaborative models in diverse urban contexts.

Keywords: Governance, Innovation, Public-Private Partnerships, Quadruple Helix, Digital collaboration, Smart cities.

DOI: 10.53894/ijirss.v8i6.9825

Funding: This study received no specific financial support.

History: Received: 18 July 2025 / Revised: 22 August 2025 / Accepted: 26 August 2025 / Published: 12 September 2025

**Copyright:** © 2025 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

**Competing Interests:** The authors declare that they have no competing interests.

**Authors' Contributions:** All authors contributed equally to the conception and design of the study. All authors have read and agreed to the published version of the manuscript.

**Transparency:** The authors confirm that the manuscript is an honest, accurate, and transparent account of the study; that no vital features of the study have been omitted; and that any discrepancies from the study as planned have been explained. This study followed all ethical practices during writing.

Publisher: Innovative Research Publishing

#### 1. Introduction

The smart city has become a leading framework for tackling the pressing challenges of rapid urbanization, digital transformation, and sustainable development. By integrating information and communication technologies (ICT), data-driven decision-making, and participatory governance, smart cities aim to improve service delivery, enhance sustainability, and create more inclusive urban environments [1, 2]. Yet, as Komninos [3] emphasizes, a smart city is not merely a technological project; it is also a social and institutional endeavor that combines human, collective, and technological intelligence to address complex urban problems collaboratively.

A central but underexplored aspect of this endeavor is digital collaboration among institutions. Governments, universities, businesses, and civil society are increasingly working together in digital environments to co-develop innovative urban solutions. Frameworks such as the Triple and Quadruple Helix underscore the value of these multi-actor ecosystems in driving knowledge co-creation and innovation [4, 5]. Such collaborations move beyond functional partnerships; they build trust, align diverse interests, and create shared governance mechanisms that are essential for long-term urban transformation [6, 7].

However, most smart city research still concentrates on technological infrastructures, such as IoT, big data, and digital twins, while neglecting the institutional dynamics of collaboration in digital ecosystems [8, 9]. Although cases like Turin and Lugano demonstrate that multi-institutional digital collaborations can enhance governance and performance [10] a systematic understanding of their structures, enablers, barriers, and outcomes remains limited [11]. This knowledge gap is particularly urgent in the current context, where post-pandemic governance, AI-driven city management, and the global race for urban innovation demand more integrated and collaborative approaches to smart city development.

This study addresses this gap through a systematic literature review (SLR) of 30 peer-reviewed studies published between 2015 and 2025. It explores three key questions: (1) What forms of institutional digital collaboration are most prevalent in smart city initiatives? (2) What enablers and barriers shape these collaborations? (3) How do these partnerships contribute to innovation and improved governance?

This review contributes to the literature by developing a typology of collaboration models, identifying cross-cutting enablers and barriers, and synthesizing evidence on how institutional partnerships drive innovation and governance in smart cities. It offers practical recommendations for policymakers and urban practitioners seeking to strengthen collaborative digital ecosystems.

To achieve these objectives, we applied a PRISMA-guided SLR methodology to ensure transparency and rigor in identifying, screening, and synthesizing relevant studies.

### 2. Materials and Methods

This systematic literature review (SLR) was conducted in accordance with the PRISMA 2020 guidelines, ensuring transparency, reproducibility, and traceability throughout the review process. The PRISMA framework guided the identification, screening, eligibility assessment, and inclusion of relevant studies.

### 2.1. Search Strategy

The literature search was conducted between January and March 2025 across two major academic databases: Scopus and PubMed, chosen for their comprehensive coverage of multidisciplinary research in urban studies, governance, and technology.

- Scopus Search Query: ("smart city" OR "smart cities") AND ("digital collaboration" OR "collaborative platform" OR "inter-institutional collaboration" OR "cross-sector collaboration" OR "public-private partnership") AND ("institution\*" OR "government" OR "university" OR "industry" OR "NGO")
- Search Ouery: (("smart city"[Title/Abstract] OR "smart cities"[Title/Abstract]) (collab\*[Title/Abstract] OR partnership\*[Title/Abstract] OR "public-private"[Title/Abstract] OR "quadruple helix"[Title/Abstract] OR "urban living lab\*"[Title/Abstract] OR governance[Title/Abstract])) AND (institution\*[Title/Abstract] government[Title/Abstract] OR university[Title/Abstract] OR OR industry[Title/Abstract] OR NGO[Title/Abstract])

**Note:** The last search was run on 31 March 2025.

The queries were refined iteratively to capture studies focusing on institutional collaboration in smart city contexts, ensuring the inclusion of diverse models such as public-private partnerships, collaborative platforms, and cross-sector initiatives.

# 2.2. Screening and Eligibility

The initial search retrieved 1,832 records (110 from Scopus and 1,722 from PubMed). The following inclusion and exclusion criteria were applied:

- Inclusion criteria:
- 1. Published between 2015–2025.
- 2. Peer-reviewed journal articles in their final publication stage.
- 3. Written in English.
- 4. Focused on institutional collaboration in smart city initiatives, including public-private partnerships, cross-sector collaboration, or inter-institutional digital platforms.
- 5. Open-access or institutionally accessible full text.

- Exclusion criteria:
- 1. Editorials, conference papers, book chapters, or non-peer-reviewed sources.
- 2. Articles focusing solely on technical aspects (e.g., IoT, AI algorithms) without institutional or collaborative dimensions.
- 3. Studies with insufficient methodological or conceptual relevance.

After applying these filters, the records were screened by titles and abstracts for relevance, followed by full-text reviews.

### 2.3. Selection Process

- Scopus: 110 initial records → 108 after date filtering → 52 after document-type filtering → 45 after relevance screening → 21 after open-access filtering → 15 included.
- PubMed: 1,722 initial records → 1,715 after date filtering → 1,603 after document-type filtering → 1,259 after availability filtering → 1,255 after language filtering → 15 after relevance screening → 15 included.

This process resulted in a final set of 30 articles (15 from each database), representing a diverse range of geographic contexts, collaboration models, and methodological approaches.

#### 2.4. Data Extraction and Synthesis

Key information from each study, including author(s), year, country, collaboration model, methodological approach, and key findings, was extracted into a structured database for thematic synthesis. Studies were analyzed to identify patterns, enablers, barriers, and outcomes of digital collaboration among institutions in smart city initiatives.

The selection process is summarized in Figure 1 (PRISMA Flow Diagram), beginning with an initial pool of 1,832 records and culminating in 30 studies included in the final synthesis.

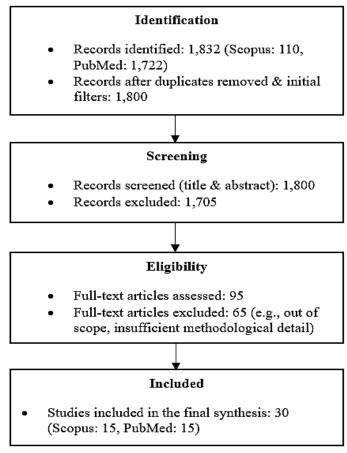



Figure 1. PRISMA 2020 flow diagram of study selection (initial n=1,832; included n=30).

## 3. Results

This section presents the synthesized findings from 30 peer-reviewed studies, structured around collaboration models, methodological approaches, enabling and limiting factors, and key outcomes. It also includes a quality appraisal to ensure the reliability of the evidence base.

## 3.1. Overview of Reviewed Studies

The 30 selected studies span a diverse range of geographic regions, collaboration models, and thematic focuses. Table 1 summarizes their key characteristics, including study focus, collaboration model, methodology, enablers, barriers, and key outcomes.

**Table 1.**Summary characteristics of the 30 included studies.

| No  | Author(s) &                            | the 30 included studies  Country/Region | Study Focus                                              | Collaboration                 | Methodology          | Enablers                                                                     | Barriers                                   | Key Outcomes                                              |
|-----|----------------------------------------|-----------------------------------------|----------------------------------------------------------|-------------------------------|----------------------|------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|
| 110 | Year                                   | Country/Region                          | Study 1 ocus                                             | Model                         | Wiemodology          | Enables                                                                      | Darriers                                   | (Categorized)                                             |
| 1   | Kannan et al. [12]                     | Australia, Iran                         | Smart Waste Management 4.0                               | Quadruple Helix               | Case Study           | IoT, AI, big data<br>integration, stakeholder<br>engagement                  | Absence of unified frameworks              | Conceptual Framework for<br>Smart Waste Management<br>4.0 |
| 2   | Naseem et al. [13]                     | Pakistan                                | AI & ML for COVID-19 response in LMIC                    | Open Data<br>Ecosystem        | Mixed Methods        | AI diagnostic tools, predictive analytics                                    | Limited resources in LMIC                  | Policy insights for AI in pandemic preparedness           |
| 3   | Mohammadzade<br>h et al. [14]          | Iran                                    | Smart city technologies in healthcare                    | Public-Private<br>Partnership | Qualitative          | IoT, mobile apps, real-time data                                             | Infrastructure deficiencies                | Implementation framework for smart healthcare             |
| 4   | Asghar et al. [15]                     | Pakistan                                | Nanomaterials for environmental remediation              | Quadruple Helix               | Literature<br>Review | Advanced nanotechnology for pollution control                                | High costs, recycling challenges           | Strategic recommendations for nanomaterial use            |
| 5   | Buttazzoni et al. [16]                 | Canada                                  | Equity in smart city health interventions                | Urban Living<br>Labs          | Case Study           | Equity-centered planning, citizen participation                              | Lack of integration of equity dimensions   | Identification of equity gaps in interventions            |
| 6   | Hassankhani et al. [17]                | Iran, Japan                             | Smart cities for crisis management (COVID-19)            | Open Data<br>Ecosystem        | Mixed Methods        | Telehealth platforms, digital crisis tools                                   | Digital divide, privacy risks              | Lessons for crisis response via smart technologies        |
| 7   | Obracht-<br>Prondzyńska et<br>al. [18] | Poland                                  | AI-based Greencoin for climate neutrality                | Smart<br>Governance           | Design Study         | AI-driven citizen engagement models                                          | Limited AI integration                     | Greencoin model for citizen participation                 |
| 8   | Balakrishnan et al. [19]               | UK, Canada                              | Role of social media in resilience                       | Open Data<br>Ecosystem        | Content<br>Analysis  | Social media mobilization, community networks                                | Misinformation, digital inequality         | Framework for enhancing resilience via social media       |
| 9   | Rehman et al. [20]                     | Malaysia                                | Trust management in IoV                                  | Quadruple Helix               | Experimental         | Context-aware AI trust models                                                | Lack of standardization                    | Standardization strategies for IoV trust management       |
| 10  | Vihman et al. [21]                     | Estonia                                 | Fault-tolerant techniques in underwater sensor networks  | Public-Private<br>Partnership | Technical<br>Review  | Cross-layer fault tolerance, resilient communication                         | Complexity, maintenance challenges         | Taxonomy of fault-tolerant methods                        |
| 11  | Alzahrani and<br>Alfouzan [22]         | Saudi Arabia                            | Augmented Reality and cybersecurity                      | Public-Private<br>Partnership | Case Study           | AR technologies, strong cybersecurity frameworks                             | Lack of integrated policies                | Identification of AR application areas                    |
| 12  | Al-Rawashdeh et al. [23]               | Malaysia, UAE                           | IoT adoption in smart healthcare                         | Quadruple Helix               | Survey               | IoT-enabled workflows, adoption frameworks                                   | Privacy risks, low user adoption           | Framework for IoT adoption in healthcare                  |
| 13  | Khajeh et al. [24]                     | Iran, Taiwan                            | Real-time IoT scheduling for smart cities                | Smart<br>Governance           | Simulation           | Real-time data scheduling, optimization techniques                           | Energy constraints, scalability challenges | Classification of IoT scheduling methods                  |
| 14  | Hossain et al. [25]                    | Bangladesh,<br>Spain, South<br>Korea    | IoT in pregnancy care coordination                       | Open Data<br>Ecosystem        | Case Study           | Remote monitoring, ML-enhanced IoT                                           | Data privacy issues, interoperability gaps | IoT-enabled maternal care framework                       |
| 15  | Zeng et al. [26]                       | China                                   | IoT sensors for sustainable cities                       | Quadruple Helix               | Experimental         | Integration of IoT sensors,<br>multi-layered<br>communication                | Security risks, fragmented ecosystems      | IoT-driven strategies for urban sustainability            |
| 16  | Voorwinden et al. [27]                 | Netherlands                             | Legal & governance<br>structures of Urban Living<br>Labs | Urban Living<br>Labs          | Policy Analysis      | Participatory governance, flexible legal frameworks                          | Conflicting municipal roles                | Typology of legal frameworks for ULL                      |
| 17  | Gasco-<br>Hernandez et al.<br>[28]     | Italy, Spain,<br>Germany                | Organizational capacity in local governments             | Public-Private<br>Partnership | Comparative<br>Study | Strategic planning,<br>leadership, and<br>intergovernmental<br>collaboration | Limited municipal resources                | Framework for enhancing digital transformation capacity   |

| No | Author(s) &<br>Year        | Country/Region          | Study Focus                                       | Collaboration<br>Model        | Methodology             | Enablers                                                                       | Barriers                                        | Key Outcomes<br>(Categorized)                              |
|----|----------------------------|-------------------------|---------------------------------------------------|-------------------------------|-------------------------|--------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|
| 18 | Dupont et al. [29]         | France                  | Innovative PPP for smart cities (Chaire REVES)    | Public-Private<br>Partnership | Case Study              | University-industry-<br>government collaboration                               | Funding constraints, institutional inertia      | Demonstration of PPP-driven innovation                     |
| 19 | Kumar et al. [30]          | India, China            | Urban flood management vs. Sponge City            | Smart<br>Governance           | Comparative<br>Analysis | Integrated flood management strategies                                         | Financial limitations, low public participation | Comparative insights for Sponge City adoption              |
| 20 | Vallance et al. [31]       | UK                      | Quadruple Helix intermediary for urban innovation | Quadruple Helix               | Case Study              | University-anchored innovation platforms                                       | Limited early public engagement                 | Insights on intermediary roles in innovation               |
| 21 | Biygautane and Clegg [32]  | UAE                     | PPP for Dubai Smart City                          | Public-Private<br>Partnership | Case Study              | Strong political support,<br>legal frameworks, and<br>private sector expertise | Funding limitations, human capital shortages    | Blueprint for GCC smart city<br>PPPs                       |
| 22 | Bussador et al. [33]       | Brazil                  | DTI-BR model for smart tourism                    | Quadruple Helix               | Case Study              | ISO standards integration, participatory governance                            | Gaps in indicators, weak PPP collaboration      | Framework for smart tourism transformation                 |
| 23 | Tapia-McClung [34]         | Mexico                  | Spatio-temporal dashboard for crime analysis      | Open Data<br>Ecosystem        | Design Study            | Geovisual analytics, crossagency collaboration                                 | Data privacy concerns, limited interoperability | Prototype for public safety dashboards                     |
| 24 | Hardi et al. [35]          | Indonesia               | Interoperability in smart city governance         | Smart<br>Governance           | Policy Analysis         | Cross-sector collaboration, national strategy alignment                        | Regulatory resistance, data fragmentation       | Governance framework for human security                    |
| 25 | Leu et al. [36]            | Taiwan                  | Dual approach to smart city development           | Public-Private<br>Partnership | Case Study              | Top-down & bottom-up synergy, strong ICT sector                                | Limited citizen engagement                      | Taiwan's dual smart city development model                 |
| 26 | Pianezzi et al. [37]       | Japan                   | Culturally embedded PPPs                          | Public-Private<br>Partnership | Case Study              | Long-term partnerships, cultural goodwill                                      | Over-reliance on the private sector             | Insights into culturally embedded PPPs                     |
| 27 | Tan and<br>Taeihagh [38]   | Developing<br>Countries | Smart city governance                             | Quadruple Helix               | Literature<br>Review    | Regulatory reforms, citizen participation                                      | Financial constraints, governance complexity    | Systematic framework for governance in developing nations  |
| 28 | Gupta [39]                 | India                   | Smart City Mission in<br>Gwalior                  | Public-Private<br>Partnership | Case Study              | Citizen engagement,<br>policy-driven<br>redevelopment                          | Debt financing, land acquisition                | Recommendations for non-<br>metro smart cities             |
| 29 | López-Pérez et<br>al. [40] | Spain                   | Smart mobility & climate                          | Triple Helix                  | Case Study              | Science-park anchored collaboration, sustainability planning                   | Stakeholder conflicts, funding gaps             | Pilot model for integrating mobility & climate initiatives |
| 30 | Parygin et al. [41]        | Russia                  | Quadruple Helix for<br>territorial development    | Quadruple Helix               | Case Study              | Social monitoring, gamification for public input                               | Low civic engagement, adoption barriers         | Participatory development tools using the innovation helix |

### 3.2. Quality Appraisal of Included Studies

To ensure the credibility of the synthesized findings, a quality appraisal was conducted using an adapted Critical Appraisal Skills Programme (CASP) checklist.

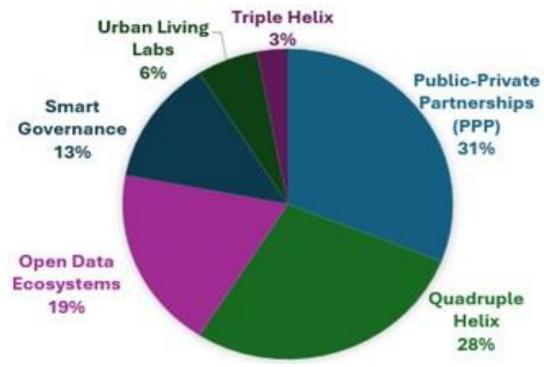
Table 2 presents the results of this appraisal. The majority of studies (n = 18) achieved a high-quality rating  $(\ge 80\%)$ , characterized by strong methodological rigor, clearly stated objectives, and transparent data reporting. The remaining studies (n = 12) were rated as moderate quality due to limited empirical validation, contextual constraints, or small sample sizes. Importantly, no studies were excluded on the basis of poor quality, as all met the minimum inclusion threshold  $(\ge 70\%)$ .

Table 2.

Quality appraisal using an adapted CASP checklist (High ≥80%).

| No. | Author(s) & Year                   | Study Design                 | CASP<br>Score<br>(%) | Quality<br>Rating | Inclusion<br>Decision | Key Appraisal Notes                                                                        |
|-----|------------------------------------|------------------------------|----------------------|-------------------|-----------------------|--------------------------------------------------------------------------------------------|
| 1   | Kannan et al. [12]                 | Empirical case study         | 85                   | High              | Included              | Clear methodology, strong data integration, and minor limitations in scalability           |
| 2   | Naseem et al. [13]                 | Systematic review            | 80                   | High              | Included              | Comprehensive review, limited regional applicability                                       |
| 3   | Mohammadzadeh et al. [14]          | Conceptual framework         | 75                   | Moderate          | Included              | Well-defined framework, lacks empirical validation                                         |
| 4   | Asghar et al. [15]                 | Review & conceptual analysis | 78                   | Moderate          | Included              | Valuable synthesis of<br>nanotechnology applications, cost<br>barriers not deeply explored |
| 5   | Buttazzoni et al. [16]             | Qualitative study            | 82                   | High              | Included              | Strong qualitative insights, small sample size                                             |
| 6   | Hassankhani et al. [17]            | Mixed-method study           | 84                   | High              | Included              | Combines qualitative & quantitative data, limited longitudinal assessment                  |
| 7   | Obracht-Prondzyńska<br>et al. [18] | Conceptual paper             | 70                   | Moderate          | Included              | Innovative AI application needs empirical validation.                                      |
| 8   | Balakrishnan et al. [19]           | Case study                   | 83                   | High              | Included              | Rich analysis of social media dynamics, context-specific                                   |
| 9   | Rehman et al. [20]                 | Technical review             | 74                   | Moderate          | Included              | Provides taxonomy for IoV trust models, lacks field application.                           |
| 10  | Vihman et al. [21]                 | Systematic review            | 81                   | High              | Included              | Comprehensive review, clear classification of techniques                                   |
| 11  | Alzahrani and<br>Alfouzan [22]     | Conceptual analysis          | 79                   | Moderate          | Included              | Identifies AR application areas, with minimal empirical testing                            |
| 12  | Al-Rawashdeh et al. [23]           | Empirical study              | 82                   | High              | Included              | Strong IoT adoption framework, limited generalizability                                    |
| 13  | Khajeh et al. [24]                 | Technical review             | 76                   | Moderate          | Included              | Provides an IoT scheduling taxonomy, lacks field validation                                |
| 14  | Hossain et al. [25]                | Mixed-method study           | 84                   | High              | Included              | Valuable integration of IoT in healthcare, privacy risks discussed                         |
| 15  | Zeng et al. [26]                   | Conceptual<br>framework      | 77                   | Moderate          | Included              | Detailed IoT sustainability strategies, need implementation data.                          |
| 16  | Voorwinden et al. [27]             | Case study                   | 83                   | High              | Included              | Clear typology of legal frameworks for ULL, context-bound.                                 |
| 17  | Gasco-Hernandez et al. [28]        | Empirical survey study       | 85                   | High              | Included              | Strong analysis of organizational capacity, small sample limitation                        |
| 18  | Dupont et al. [29]                 | Case study                   | 80                   | High              | Included              | Innovative PPP model, limited long-term impact analysis                                    |
| 19  | Kumar et al. [30]                  | Comparative analysis         | 78                   | Moderate          | Included              | Comparative insights into Sponge<br>City strategies, limited citizen<br>input.             |
| 20  | Vallance et al. [31]               | Case study                   | 82                   | High              | Included              | Highlights intermediary role in innovation, early-stage project                            |
| 21  | Biygautane and Clegg [32]          | Case study                   | 86                   | High              | Included              | In-depth PPP evaluation in Dubai, replicability uncertain                                  |

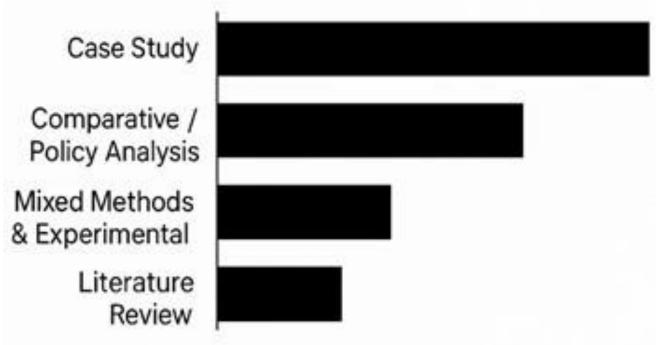
| No. | Author(s) & Year        | Study Design         | CASP<br>Score<br>(%) | Quality<br>Rating | Inclusion<br>Decision | Key Appraisal Notes                                                                                     |
|-----|-------------------------|----------------------|----------------------|-------------------|-----------------------|---------------------------------------------------------------------------------------------------------|
| 22  | Bussador et al. [33]    | Mixed-method study   | 83                   | High              | Included              | Integrating ISO standards into tourism innovation, data gaps remain                                     |
| 23  | Tapia-McClung [34]      | Case study           | 81                   | High              | Included              | Strong dashboard prototype<br>analysis, needs longitudinal<br>validation                                |
| 24  | Hardi et al. [35]       | Empirical study      | 84                   | High              | Included              | Robust evaluation of interoperability in governance, some regulatory gaps                               |
| 25  | Leu et al. [36]         | Case study           | 80                   | High              | Included              | Dual approach framework, limited grassroots engagement                                                  |
| 26  | Pianezzi et al. [37]    | Qualitative study    | 82                   | High              | Included              | Culturally grounded PPP analysis, context-specific findings                                             |
| 27  | Tan and Taeihagh [38]   | Systematic review    | 87                   | High              | Included              | Comprehensive synthesis of governance in developing nations                                             |
| 28  | Gupta [39]              | Case study           | 78                   | Moderate          | Included              | Provides practical insights for<br>Gwalior smart city, financing<br>issues remain                       |
| 29  | López-Pérez et al. [40] | Case study           | 83                   | High              | Included              | Integrates mobility & climate planning, still in pilot phase                                            |
| 30  | Parygin et al. [41]     | Conceptual framework | 79                   | Moderate          | Included              | Gamification and social monitoring strategies are well-described; however, they lack empirical testing. |


#### 3.3. Patterns Emerging from the Reviewed Studies

The analysis of the 30 studies reveals several notable patterns regarding forms of collaboration, research methodologies, enabling and limiting factors, and outcomes of digital collaboration in smart city initiatives.

# 3.3.1. Collaboration Models

Public-Private Partnerships (PPP) emerged as the most prevalent model (10 studies), underscoring their central role in leveraging private-sector expertise and resources for urban innovation. Quadruple Helix collaborations followed closely (9 studies), emphasizing the inclusion of academia and civil society alongside industry and government in co-creating urban solutions. Open Data Ecosystems (6 studies) were also prominent, reflecting the growing use of data-sharing platforms for participatory and transparent governance. Smart Governance frameworks (4 studies) and Urban Living Labs (2 studies) represent more experimental, participatory approaches, while Triple Helix collaborations (1 study) were least common. Because coding was non-exclusive, totals exceed 30 and proportions may sum to >100%.


Figure 2 visualizes these proportions, illustrating the shift from traditional PPPs toward more inclusive, multi-actor frameworks.



**Figure 2.** Distribution of collaboration models across the reviewed studies (non-exclusive coding).

## 3.3.2. Research Methodologies

Case studies dominate the evidence base (approximately 50%), reflecting the exploratory and context-specific nature of institutional collaboration research in smart cities. Comparative and policy analyses provide cross-contextual evaluations of collaboration mechanisms, while mixed-methods and experimental designs offer integrated insights, albeit in fewer studies. Literature reviews remain a minority, suggesting an opportunity for more theory-building in this domain.



**Figure 3.** Research methodologies used in the reviewed studies.

# 3.3.3. Enablers and Barriers

The most frequently reported enablers include:

- Deployment of advanced technologies (IoT, AI, big data) to improve efficiency and coordination.
- Strong political support and enabling legal frameworks that foster collaboration.
- Active multi-stakeholder engagement across government, academia, industry, and civil society.

Conversely, key barriers include:

- Fragmented governance structures and regulatory misalignments.
- Resource constraints, including financial and human capital shortages.
- Technical challenges, particularly those related to interoperability, data privacy, and system integration.

These factors are visualized in Figure 4, which highlights the most recurring enablers and barriers across the studies.



Figure 4.

Frequency of reported enablers and barriers.

### 3.3.4. Outcomes

The reviewed studies predominantly produce conceptual and implementation frameworks (around 60%), offering structured guidance for digital collaboration in smart cities. Around 20% present prototypes or digital tools, while another 20% provide policy insights and recommendations, demonstrating an applied orientation toward actionable urban innovation.

#### 3.4. Summary of Key Findings

In sum, the evidence highlights a paradigm shift toward more inclusive, multi-actor collaboration frameworks, with PPPs remaining foundational but increasingly complemented by Quadruple Helix and data-driven models. While advanced technologies and strong governance support collaboration, fragmentation, resource limitations, and technical barriers remain persistent challenges. Conceptual contributions dominate the literature, signaling the need for greater empirical testing and evaluation of collaborative models in practice.

#### 4. Discussion

This systematic review synthesized findings from 30 peer-reviewed studies to answer the research questions regarding the forms, enablers, barriers, and outcomes of institutional digital collaboration in smart city initiatives.

## 4.1. Forms of Institutional Digital Collaboration in Smart Cities

Addressing RQ1, the review confirms that Public-Private Partnerships (PPPs) remain the most widely adopted model, appearing in one-third of the reviewed studies. This aligns with prior scholarship highlighting PPPs as a central mechanism for mobilizing private-sector resources and expertise for complex urban projects [29, 32]. However, the strong representation of Quadruple Helix collaborations (28%) signals a shift toward inclusive, multi-actor frameworks that integrate academia and civil society alongside industry and government, enabling co-created urban solutions [33]. Open Data Ecosystems further illustrate the increasing importance of data-driven collaboration for participatory governance, while Smart Governance frameworks and Urban Living Labs reflect experimental, adaptive approaches to city-making. Triple Helix models, though historically prominent, appear less suited for addressing the complexity of contemporary urban innovation challenges.

#### 4.2. Enablers and Barriers of Collaboration

For RQ2, the review identifies three major enablers:

- 1. Integration of advanced technologies IoT, AI, and big data improves efficiency and supports evidence-based decision-making [26].
- 2. Strong political commitment and supportive legal frameworks, essential for institutionalizing collaborative practices [35].
- 3. Active multi-stakeholder engagement fosters legitimacy and shared ownership, especially in Quadruple Helix and Urban Living Labs [27].

Conversely, fragmented governance structures and regulatory misalignments emerged as critical barriers [35]. Resource constraints, including financial and human capital shortages, particularly constrained projects in developing contexts [13, 39]. Technical barriers, such as interoperability gaps, cybersecurity risks, and data privacy issues, further inhibited scalability [25].

### 4.3. Contributions to Innovation and Governance

Regarding RQ3, the review shows that 60% of studies delivered conceptual or implementation frameworks, offering structured pathways for collaboration in smart city projects. Examples include frameworks for Smart Waste Management 4.0 [12] and digital transformation in governance [35]. Prototypes and digital tools accounted for 20%, while another 20% presented policy insights to inform implementation. Collectively, these findings highlight that institutional collaborations not only enhance technological deployment but also strengthen governance capacity through more adaptive, participatory, and data-driven decision-making.

#### 4.4. Implications for Practice and Research

For practice, policymakers should institutionalize multi-stakeholder participation, especially Quadruple Helix and Open Data Ecosystem models, while investing in interoperability and capacity-building to mitigate technical and resource constraints. For research, the dominance of conceptual contributions signals the need for more empirical and longitudinal studies to evaluate the long-term effects of these collaboration models on innovation and governance.

#### 4.5. Limitations

This review is limited by its focus on peer-reviewed sources, potentially excluding valuable insights from grey literature. Additionally, the wide geographic diversity of the studies warrants caution in generalizing results across socio-political contexts.

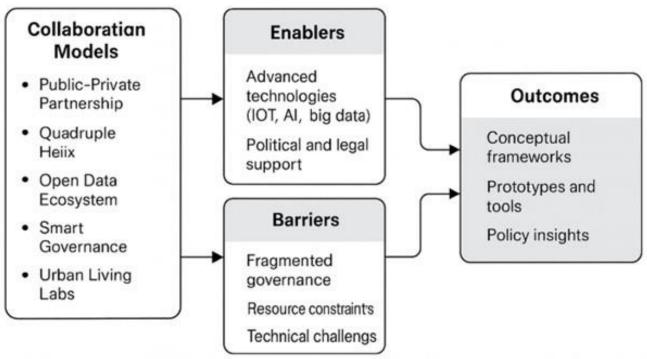



Figure 5.
Conceptual model linking collaboration models, enablers, barriers, and outcomes.

### 5. Conclusion

This systematic review demonstrates a paradigm shift from traditional PPPs toward more inclusive, multi-actor collaboration frameworks in smart city initiatives. Advanced technologies, strong governance support, and active stakeholder participation emerge as key enablers of successful collaboration, while fragmented governance, resource shortages, and technical challenges persist as significant barriers. The findings underscore the dual role of these collaborations: not only advancing technological innovation but also enhancing urban governance through participatory, evidence-based decision-making. Future research should emphasize comparative and longitudinal studies to assess the scalability and long-term impact of these collaborative frameworks, ensuring that smart city initiatives deliver both innovation and inclusivity.

## References

- [1] T. Nam and T. Pardo, "Conceptualizing smart city with dimensions of technology, people, and institutions," in *Proceedings of the 12th Annual International Conference on Digital Government Research*, 2011, pp. 282–291, doi: https://doi.org/10.1145/2037556.2037602.
- [2] Chourabi H et al, "Understanding smart cities: An integrative framework," in *Proceedings of the Hawaii International Conference on System Sciences. IEEE Computer Society*, 2012, pp. 2289–2297, doi: https://doi.org/10.1109/HICSS.2012.615.
- [3] N. Komninos, Smart cities and connected intelligence. London: Routledge, 2019. https://doi.org/10.4324/9780367823399

- [4] H. Etzkowitz and L. Leydesdorff, "The dynamics of innovation: From National Systems and "Mode 2" to a Triple Helix of university-industry-government relations," *Research Policy*, vol. 29, no. 2, pp. 109-123, 2000. http://dx.doi.org/10.1016/S0048-7333(99)00055-4
- [5] R. Arnkil, A. Järvensivu, P. Koski, and T. Piirainen, "Exploring quadruple helix: Outlining user-oriented innovation models," Working Paper No. 85/2010Tampere: University of Tampere, Research Institute for Social Sciences, Work Research Centre, 2010.
- [6] P. Lombardi, S. Giordano, H. Farouh, and W. Yousef, "Modelling the smart city performance," *Innovation: The European Journal of Social Science Research*, vol. 25, no. 2, pp. 137-149, 2012. https://doi.org/10.1080/13511610.2012.660325
- [7] E. G. Carayannis and D. F. Campbell, "'Mode 3'and'Quadruple Helix': Toward a 21st century fractal innovation ecosystem," International Journal of Technology Management, vol. 46, no. 3-4, pp. 201-234, 2009.
- [8] D. E. Mills, I. Izadgoshasb, and S. G. Pudney, "Smart city collaboration: A review and an agenda for establishing sustainable collaboration," *Sustainability*, vol. 13, no. 16, p. 9189, 2021. https://doi.org/10.3390/su13169189
- [9] A. A. Guenduez, I. Mergel, K. Schedler, S. Fuchs, and C. Douillet, "Institutional work in smart cities: Interviews with smart city managers," *Urban Governance*, vol. 4, no. 1, pp. 80-90, 2024. https://doi.org/10.1016/j.ugj.2024.01.003
- [10] S. Secinaro, V. Brescia, D. Iannaci, and M. Barreca, "Performance evaluation in the inter-institutional collaboration context of hybrid smart cities," *Journal of Intercultural Management*, vol. 13, no. 3, pp. 20-46, 2021. https://doi.org/10.2478/joim-2021-0065
- [11] A. A. Guenduez, R. Frischknecht, S. C. Frowein, and K. Schedler, "Government-university collaboration on smart city and smart government projects: What are the success factors?," *Cities*, vol. 144, p. 104648, 2024. https://doi.org/10.1016/j.cities.2023.104648
- [12] D. Kannan, S. Khademolqorani, N. Janatyan, and S. Alavi, "Smart waste management 4.0: The transition from a systematic review to an integrated framework," *Waste Management*, vol. 174, pp. 1-14, 2024. https://doi.org/10.1016/j.wasman.2023.08.041
- [13] M. Naseem, R. Akhund, H. Arshad, and M. T. Ibrahim, "Exploring the potential of artificial intelligence and machine learning to combat COVID-19 and existing opportunities for LMIC: A scoping review," *Journal of Primary Care & Community Health*, vol. 11, p. 2150132720963634, 2020. https://doi.org/10.1177/2150132720963634
- Z. Mohammadzadeh, H. R. Saeidnia, A. Lotfata, M. Hassanzadeh, and N. Ghiasi, "Smart city healthcare delivery innovations: A systematic review of essential technologies and indicators for developing nations," *BMC Health Services Research*, vol. 23, no. 1, p. 1180, 2023. https://doi.org/10.1186/s12913-023-10200-8
- [15] N. Asghar *et al.*, "Advancement in nanomaterials for environmental pollutants remediation: A systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms," *Journal of Nanobiotechnology*, vol. 22, no. 1, p. 26, 2024. https://doi.org/10.1186/s12951-023-02151-3
- [16] A. Buttazzoni, M. Veenhof, and L. Minaker, "Smart city and high-tech urban interventions targeting human health: An equity-focused systematic review," *International Journal of Environmental Research and Public Health*, vol. 17, no. 7, p. 2325, 2020. https://doi.org/10.3390/ijerph17072325
- [17] M. Hassankhani, M. Alidadi, A. Sharifi, and A. Azhdari, "Smart city and crisis management: Lessons for the COVID-19 pandemic," *International Journal of Environmental Research and Public Health*, vol. 18, no. 15, p. 7736, 2021. https://doi.org/10.3390/ijerph18157736
- [18] H. Obracht-Prondzyńska, E. Duda, H. Anacka, and J. Kowal, "Greencoin as an AI-based solution shaping climate awareness," *International Journal of Environmental Research and Public Health*, vol. 19, no. 18, p. 11183, 2022. https://doi.org/10.3390/ijerph191811183
- [19] S. Balakrishnan *et al.*, "Sustainable smart cities—Social media platforms and their role in community neighborhood resilience—A systematic review," *International Journal of Environmental Research and Public Health*, vol. 20, no. 18, p. 6720, 2023. https://doi.org/10.3390/ijerph20186720
- [20] A. Rehman, M. F. Hassan, K. H. Yew, I. Paputungan, and D. C. Tran, "State-of-the-art IoV trust management a meta-synthesis systematic literature review (SLR)," *PeerJ Computer Science*, vol. 6, p. e334, 2020. https://doi.org/10.7717/peerj-cs.334
- [21] L. Vihman, M. Kruusmaa, and J. Raik, "Systematic review of fault tolerant techniques in underwater sensor networks," *Sensors*, vol. 21, no. 9, p. 3264, 2021. https://doi.org/10.3390/s21093264
- [22] N. M. Alzahrani and F. A. Alfouzan, "Augmented reality (AR) and cyber-security for smart cities—A systematic literature review," *Sensors*, vol. 22, no. 7, p. 2792, 2022. https://doi.org/10.3390/s22072792
- [23] M. Al-Rawashdeh, P. Keikhosrokiani, B. Belaton, M. Alawida, and A. Zwiri, "IoT adoption and application for smart healthcare: A systematic review," *Sensors*, vol. 22, no. 14, p. 5377, 2022. https://doi.org/10.3390/s22145377
- [24] A. S. Khajeh, M. Saberikamarposhti, and A. M. Rahmani, "Real-time scheduling in IoT applications: A systematic review," Sensors, vol. 23, no. 1, p. 232, 2022. https://doi.org/10.3390/s23010232
- [25] M. M. Hossain *et al.*, "Internet of things in pregnancy care coordination and management: A systematic review," *Sensors*, vol. 23, no. 23, p. 9367, 2023. https://doi.org/10.3390/s23239367
- [26] F. Zeng, C. Pang, and H. Tang, "Sensors on internet of things systems for the sustainable development of smart cities: A systematic literature review," *Sensors*, vol. 24, no. 7, p. 2074, 2024. https://doi.org/10.3390/s24072074
- [27] A. Voorwinden, E. van Bueren, and L. Verhoef, "Experimenting with collaboration in the Smart City: Legal and governance structures of Urban Living Labs," *Government Information Quarterly*, vol. 40, no. 4, p. 101875, 2023. https://doi.org/10.1016/j.giq.2023.101875
- [28] M. Gasco-Hernandez, G. Nasi, M. Cucciniello, and A. M. Hiedemann, "The role of organizational capacity to foster digital transformation in local governments: The case of three European smart cities," *Urban Governance*, vol. 2, no. 2, pp. 236-246, 2022. https://doi.org/10.1016/j.ugj.2022.09.005
- [29] L. Dupont, L. Morel, and C. Guidat, "Innovative public-private partnership to support Smart City: The case of "Chaire REVES"," *Journal of Strategy and Management*, vol. 8, no. 3, pp. 245-265, 2015. http://dx.doi.org/10.1108/JSMA-03-2015-0027
- [30] N. Kumar, X. Liu, S. Narayanasamydamodaran, and K. K. Pandey, "A systematic review comparing urban flood management practices in India to China's sponge city program," *Sustainability*, vol. 13, no. 11, p. 6346, 2021. https://doi.org/10.3390/su13116346

- [31] P. Vallance, M. Tewdwr-Jones, and L. Kempton, "Building collaborative platforms for urban innovation: Newcastle city Futures as a quadruple helix intermediary," *European Urban and Regional Studies*, vol. 27, no. 4, pp. 325-341, 2020. https://doi.org/10.1177/0969776420905630
- [32] M. Biygautane and S. Clegg, "Constructing smart cities through the use of public-private partnerships: The case of dubai in the United Arab Emirates," *Journal of Infrastructure, Policy and Development,* vol. 8, no. 6, p. 3668, 2024. https://doi.org/10.24294/jipd.v8i6.3668
- [33] A. Bussador, B. F. C. Bauermann, M. D. Matrakas, J. C. Padilha, and K. R. de Freitas Zara, "DTI-BR model applied in Foz do Iguaçu, Brazil, for its transformation into a smart tourism destination," *Journal of Infrastructure. Policy and Development*, vol. 7, no. 2, p. 2152, 2023. https://doi.org/10.24294/jipd.v7i2.2152
- [34] R. Tapia-McClung, "Exploring the use of a spatio-temporal city dashboard to study criminal incidence: A case study for the Mexican state of aguascalientes," *Sustainability*, vol. 12, no. 6, p. 2199, 2020. https://doi.org/10.3390/su12062199
- [35] R. Hardi, A. Nurmandi, T. Purwaningsih, and H. A. Manaf, "Smart city governance and interoperability: Enhancing human security in Yogyakarta and Makassar, Indonesia," *Frontiers in Political Science*, vol. 7, p. 1553177, 2025. https://doi.org/10.3389/fpos.2025.1553177
- [36] J. H. Leu, B. C. Lin, Y. Y. Liao, and D. Y. Gan, "Smart city development in Taiwan," *IET Smart Cities*, vol. 3, no. 3, pp. 125-141, 2021. https://doi.org/10.1049/smc2.12008
- [37] D. Pianezzi, Y. Mori, and S. Uddin, "Public–private partnership in a smart city: A curious case in Japan," *International Review of Administrative Sciences*, vol. 89, no. 3, pp. 632-647, 2023. https://doi.org/10.1177/00208523211051839
- [38] S. Y. Tan and A. Taeihagh, "Smart city governance in developing countries: A systematic literature review," *Sustainability*, vol. 12, no. 3, p. 899, 2020. https://doi.org/10.3390/su12030899
- [39] S. Gupta, "Smart city paradigm in India: Gwalior a case study," *Humanities & Social Sciences Reviews*, vol. 7, no. 4, pp. 341-347, 2019. https://doi.org/10.18510/hssr.2019.7444
- [40] M. E. López-Pérez, M. E. Reyes-García, and M. E. López-Sanz, "Smart mobility and smart climate: an illustrative case in Seville, Spain," *International Journal of Environmental Research and Public Health*, vol. 20, no. 2, p. 1404, 2023. https://doi.org/10.3390/ijerph20021404
- [41] D. Parygin, N. Sadovnikova, L. Gamidullaeva, A. Finogeev, and N. Rashevskiy, "Tools and technologies for sustainable territorial development in the context of a quadruple innovation helix," *Sustainability*, vol. 14, no. 15, p. 9086, 2022. https://doi.org/10.3390/su14159086